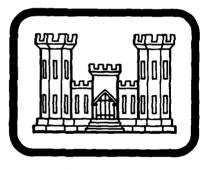


SUSQUEHANNA RIVER BASIN WOLCOTT CREEK, BRADFORD COUNTY

MACHAM DAM

(NDI I.D. A. PA-00043


PENNDER I.D. 8.56)

Cusyuclanna River Basin. Wolonten

York, Bradford Coolit, Pennylvanian

PHASE I INSPECTION REPORT,

PAM INSPECTION PROGRAM

PREPARED FOR

DEPARTMENT OF THE ARMY Baltimore District, Corps of Engineers ' Baltimore, Maryland 21203

PREPARED BY

GAI CONSULTANTS, INC. 570 BEATTY ROAD MONROEVILLE, PENNSYLVANIA 15146

GAI CONSULTANTS, INC. 4/1007
DACW31-80-C-p016 Q A O

ADA 08776

IDE ALE COPY

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D. C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation and analyses involving topograhic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition, and the downstream damage potential.

This document has been approved to public solvens and sale; is distribution is unlimited.

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

ABSTRACT

Macham Dam: NDI I.D. No. PA-00043

The section of the se

Owner: Manley and Afton Chamberlain

State Located: Pennsylvania (PennDER I.D. No. 8-56)

County Located: Bradford

Stream: Wolcott Creek

Inspection Date: 22 April 1980

Inspection Team: GAI Consultants, Inc.

570 Beatty Road

Monroeville, Pennsylvania 15146

Based on a visual inspection, operational history, and available engineering data, the dam is considered to be in fair condition.

The size classification of the facility is small and its hazard classification is considered to be high. In accordance with the recommended guidelines, the Spillway Design Flood (SDF) for the facility ranges between the 1/2 PMF (Probable Maximum Flood) and the PMF. Due to the high potential for damage to downstream structures and possible loss of life, the SDF is considered to be the PMF. Results of the hydrologic and hydraulic analysis indicate the facility will pass and/or store only about 43 percent of the PMF prior to embankment overtopping. A breach analysis indicates that failure under less than 1/2 PMF conditions could lead to increased downstream damage and potential for loss of life. Thus, based on the screening criteria contained in the recommended guidelines, the spillway is considered to be seriously inadequate and the facility unsafe, non-emergency.

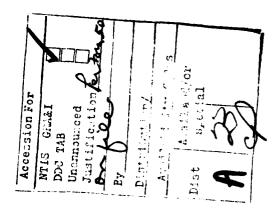
It is recommended that the owner immediately:

a. Develop a formal emergency warning system to notify downstream residents should hazardous conditions develop. Included in the plan should be provisions for around-the-clock surveillance of the facility during periods of unusually heavy precipitation.

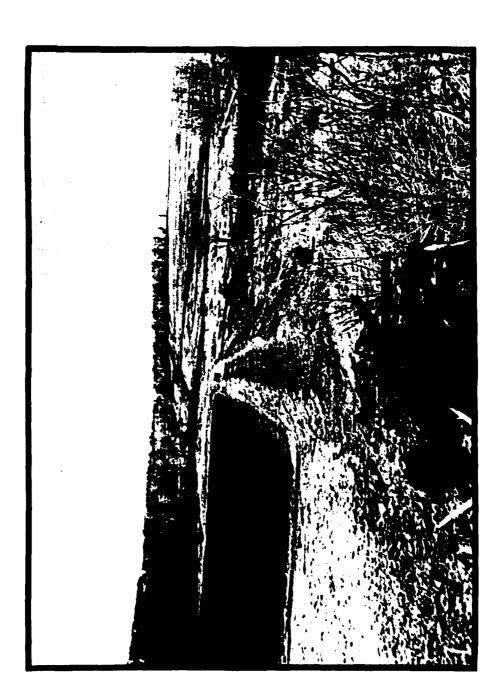
MACHAM DAM - NDI No. PA 00043

- Retain the services of a registered professional engineer experienced in the hydraulics and hydrology of dams to further assess the adequacy of the spillway facilities and take remedial measures deemed necessary to make the facility hydraulically adequate.
- Repair the eroded upstream embankment slope and provide adequate riprap material to protect it against future damage.
- Repair the damaged outlet conduit control mechanism d. and re-establish access to the manual operator.
- Clean out weep holes, fill and seal all cracks and repair spalled portions of the concrete spillway. In addition, the condition of the concrete should be specifically addressed in all future inspections.
- Develop formal manuals of operation and maintenance to ensure the future proper care of the facility.

GAI Consultants, Inc.


and M. Marci Bernard M. Mihalcin, P.E. Approved by:

AMES W. PECK Colonel, Corps of Engineers


District Engineer

Date 10 July 1980

Date 31 546, 1930

TABLE OF CONTENTS

	Page
PREFACE	i
ABSTRACT	ii
OVERVIEW PHOTOGRAPH	iv
TABLE OF CONTENTS	v
SECTION 1 - GENERAL INFORMATION	1
1.0 Authority	: : 1 : : 1
1.1 Purpose	$\begin{array}{ccc} \cdot & \cdot & 1 \\ \cdot & \cdot & 1 \end{array}$
1.1 Purpose	2
SECTION 2 - ENGINEERING DATA	
2.1 Design	6
2.3 Operational Records	6
2.4 Other Investigations	6
SECTION 3 - VISUAL INSPECTION	
3.1 Observations	7
3.2 Evaluation	
SECTION 4 - OPERATIONAL PROCEDURES	
4.1 Normal Operating Procedure	9
4.2 Maintenance of Dam	9
4.3 Maintenance of Operating Facilities	9
4.4 Warning System	9
SECTION 5 - HYDROLOGIC/HYDRAULIC EVALUATION	
5.1 Design Data	10
5.3 Visual Observations	10
5.4 Method of Analysis	10
5.5 Summary of Analysis	11
5.6 Spillway Adequacy	
SECTION 6 - EVALUATION OF STRUCTURAL INTEGRITY	14
6.1 Visual Observations	14
6.2 Design and Construction Techniques	14
6.3 Past Performance	15
6.4 Seismic Stability	15
SECTION 7 - ASSESSMENT AND RECOMMENDATIONS FOR	• -
REMEDIAL MEASURES	16
7.1 Dam Assessment	16
7.2 Recommendations/Remedial Measures	16

TABLE OF CONTENTS

APPENDIX A - VISUAL INSPECTION CHECKLIST AND FIELD SKETCHES

APPENDIX B - ENGINEERING DATA CHECKLIST

APPENDIX C - PHOTOGRAPHS

APPENDIX D - HYDROLOGY AND HYDRAULICS ANALYSES

APPENDIX E - FIGURES

APPENDIX F - GEOLOGY

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM MACHAM DAM NDI# PA-00043, PENNDER# 8-56

SECTION 1 GENERAL INFORMATION

1.0 Authority.

The Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspection of dams throughout the United States.

1.1 Purpose.

The purpose is to determine if the dam constitutes a hazard to human life or property.

1.2 Description of Project.

- a. Dam and Appurtenances. Macham Dam is an earth embankment approximately 19 feet high and 575 feet long, including spillway. The facility is provided with an uncontrolled, rectangular, concrete chute channel spillway located at the left abutment. The spillway is constructed with a 75-foot long, broad crested weir having a 35-foot breadth. Drawdown capability is provided by means of an 18-inch diameter reinforced concrete conduit controlled at the inlet by an 18-inch diameter sluice gate.
- b. Location. Macham Dam is located on Wolcott Creek in Athens Township, Bradford County, Pennsylvania. The structure is situated at the intersection of Wolcott Hollow and Kellogg Roads approximately five miles west of Greenes Landing, Pennsylvania. The dam, reservoir, and watershed are located within the Sayre and Bentley Creek, Pennsylvania 7.5 minute U.S.G.S. topographic quadrangles (see Figures 1 and 2, Appendix E). The coordinates of the dam are N41° 55.2' and W76° 37.2'.
- c. <u>Size Classification</u>. Small (19 feet high, 550 acrefeet storage capacity at top of dam.
 - d. <u>Hazard Classification</u>. High (see Section 3.1.e).
 - e. Ownership. Manley and Afton Chamberlain
 Box 122
 R.D. 2
 Wellsburg, N.Y. 14894

f. Purpose. Recreation.

h. Historical Data. Macham Dam is owned by Manley and Afton Chamberlain, a father and son partnership who conceived the project in the early 1960's as a private recreational facility. Herluf T. Larsen of Harrisburg, Pennsylvania conducted a complete soils and foundation investigation while David C. Meyer, P.E. of Sayre, Pennsylvania performed the actual design of the facility. A construction permit was issued by the state in May 1966. The facility was built entirely by the Chamberlains who apparently worked on weekends and in their spare time and was eventually completed in November 1970. No major modifications have been made to the facility since its completion.

1.3 Pertinent Data.

- a. Drainage Area (square miles). 2.4
- b. Discharge at Dam Site.

Discharge Capacity of Outlet Conduit - Discharge curves are not available.

Discharge Capacity of Spillway at Maximum Pool ≅ 2430 cfs (see Appendix D, Sheet 10).

c. <u>Elevation (feet above mean sea level)</u>. The following elevations were obtained from design drawings and field measurements utilizing a base datum as defined in Appendix D, Sheet 2, Note 2 (also see Appendix D, Sheet 1).

Top of Dam	1309.0
Maximum Design Pool	1309.0
Maximum Pool of Record	1305.0 (Oct. 1975)
Normal Pool	1304.0
Spillway Crest	1304.0
Upstream Inlet Invert	1290.5
Downstream Outlet Invert	1289.9
Streambed at Dam Centerline	1290.0
Maximum Tailwater	Not known.

d. Reservoir Length (feet).

Top of	Dam	3000
Normal	Pool	2700

e. Storage (acre-feet).

> Top of Dam 550 Normal Pool 310 Design Surcharge 240

f. Reservoir Surface (acres).

> 52 Top of Dam Normal Pool 44

Dam. g.

> Homogeneous earth. Type

Length 500 feet (excluding

spillway).

Height 19 feet (field

measured; embankment crest to downstream

outlet invert).

15 feet. Top Width

2.5H: 1V (field). Upstream Slope

3H:1V (design).

Downstream Slope 2H:1V

Zoning Homogeneous earth

(see Figure 5).

None indicated. Impervious Core

Cutoff Trapezoidal shaped

cutoff trench eight feet wide at the base with lH: LV side slopes located just upstream of the

embankment centerline (see Figure 5).

Grout Curtain None indicated.

h. Diversion Canal and Regulating Tunnels. None. i. Spillway.

Type

Uncontrolled, rectangular, concrete chute channel with a broad crested weir.

Crest Elevation

1304.0 feet.

Crest Length

75 feet.

j. Outlet Conduit.

Type

18-inch diameter reinforced concrete

conduit.

Length

88 feet.

Closure and Regulating

Facilities

Flow through the outlet is controlled via 18-inch diameter sluice gate at the

inlet.

Access

Access bridge reportedly toppled by ice pressure (May 1973 photo indicates bridge down). Valve operation would currently require

divers.

SECTION 2 ENGINEERING DATA

2.1 Design.

a. Design Data Availability and Sources. A subsurface investigation entitled, "Soils and Foundation Report on Site of Proposed Macham Dam," was prepared by Herluf T. Larsen, Consulting Engineer of Harrisburg, Pennsylvania in 1965 and is available from PennDER files. No formal design reports or calculations are available for the embankment or its appurtenances. Limited data pertaining to the design features of Macham Dam are contained within PennDER files in the form of design drawings, construction progress reports, dated photographs and miscellaneous correspondence. A state permit report dated May 13, 1966 aptly describes the pertinent design features of the facility.

b. Design Features.

Information contained in PennDER Embankment. files indicate the embankment is a homogeneous earthfill structure composed of impervious material (glacial till) placed in 6-inch layers and compacted with a sheepsfoot roller. A trapezoidal shaped cutoff trench has been provided just upstream of the embankment crest, but, parallel to the embankment centerline. The trench was excavated to a minimum depth of four feet with an 8-foot base width and 1H:1V side slopes (see Figure 5). The design slopes of the dam are 3H:1V on the upstream face and 2H:1V on the down-The design crest width is 15 feet and along stream face. with the downstream slope is vegetated with grass. Design drawings and construction photographs indicate that upstream slope protection was accomplished by utilizing a cementitious soil mixture. A 4-inch diameter perforated pipe toe drain is indicated on Figure 4 at the extreme downstream toe.

c. Appurtenant Structures.

a) Spillway. The spillway is designed as an uncontrolled, rectangular, concrete chute channel with a broad crested overflow weir. The design crest is 75 feet in length and is set five feet below the top of the wingwalls. Concrete cutoff walls have been provided on each side of the spillway and extend into the embankment and left abutment hillside (see Figure 4). A 4-foot deep by 1-foot thick cutoff wall at the discharge end of the spillway is discussed in permit correspondence and shown on Figure 4. Photographs of spillway undercutting taken in 1973 indicate the cutoff was not constructed.

b) Outlet Conduit. The outlet conduit is an 18-inch diameter reinforced concrete pipe placed in a reinforced concrete cradle. Flows through the conduit are controlled by means of an 18-inch diameter Rodney Hunt circular sluice gate at the inlet. The gate is designed to be operated from a platform built on a steel tower and accessed by a steel bridge from the embankment crest (see Figure 5). A reinforced concrete stilling basin at the outlet end is indicated also in Figure 5; however, field observations indicate it was not constructed.

c. Specific Design Data and Criteria.

- 1. Hydrology and Hydraulics. No formal design reports or calculations are available. Information contained in PennDER files indicates the spillway was designed in accordance with state requirements. The design spillway capacity was reported as 2530 cfs.
- 2. Embankment. No design data other than the specifications included in Figure 4 are available.
- 3. Appurtenant Structures. No design data are available.

2.2 Construction Records.

Design drawings, construction progress reports prepared by the owners, and several construction photographs are available in PennDER files. No formal records of construction compliance are available.

2.3 Operational Records.

No records of the present day-to-day operation of the facility are maintained.

2.4 Other Investigations.

PennDER files contain brief letters concerning state inspections in 1973 and 1977 both of which noted erosion at the end of the spillway. No other formal investigations have been performed on the facility since its completion.

2.5 Evaluation.

The information available is considered adequate to make a reasonable Phase I assessment of the facility.

SECTION 3 VISUAL INSPECTION

3.1 Observations.

- a. <u>General</u>. The general appearance of the facility suggests the dam and its appurtenances are in fair condition.
- b. Embankment. Observations made during the visual inspection indicate the embankment is in fair condition. No evidence of seepage through the embankment face, excess settlements, animal burrows, or signs of maintenance neglect were observed (see Photograph 1). Significant sloughing and erosion is evident across the upstream embankment face just above normal pool (see Photographs 2 and 3) indicating that the soil-cement slope protection has been ineffective.

c. Appurtenant Structures.

- 1. Spillway. The visual inspection indicates the spillway is in fair condition. Several weep holes in the spillway slab are debris filled and deterioration of the concrete surface is visible throughout the entire structure, particularly along the wingwalls (see Photographs 4 and 6). Evidence of prior damage due to undercutting of the discharge end of the channel was observed (see Photograph 5). Remedial measures appear adequate; however, the spillway should be observed regularly, especially after large flows.
- 2. <u>Outlet Conduit</u>. The outlet conduit is considered to be in fair condition. The steel access bridge from the embankment crest to the gate control mechanism was toppled (presumably by ice pressure) several years ago and has not yet been replaced. As a result, the current operability of the conduit is questionable. The stilling basin indicated on Figure 5 was not constructed. As a result, some erosion may occur upon operating the outlet conduit.
- d. Reservoir Area. The general area surrounding the reservoir is characterized by gentle to moderate slopes that are primarily forested. No signs of slope distress were observed (see Photograph 4).
- e. <u>Downstream Channel</u>. The channel downstream of Macham Dam is confined within a narrow valley with steep confining slopes. The valley contains several farms which appear sufficiently above the streambed so as to not be threatened by the high water that would be associated with an embankment breach. However, approximately five miles

downstream, at Greenes Landing, a mobile trailer park is located adjacent the stream and could possibly incur extensive damage, including loss of life, as the result of an embankment breach. It is likely that as many as 50 persons could be affected by such an event. Thus, the hazard classification of the facility is considered to be high.

3.2 Evaluation.

The overall appearance of the facility suggests it to be in fair condition. For the most part, the facility is adequately maintained; however, remedial steps are required to repair the upstream embankment slope and protect it against future erosion from wave action. Efforts should also be undertaken to restore full operability to the outlet conduit control valve and provide easy access to its manual operator. In addition, the spillway concrete surfaces are deteriorating and in need of repair while the weep holes in the spillway slab should be cleaned of debris.

SECTION 4 OPERATIONAL PROCEDURES

4.1 Normal Operating Procedure.

Macham Dam is essentially a self-regulating facility with excess inflow automatically discharged through the uncontrolled spillway located at the left abutment. The outlet conduit is not operated on a regular basis nor are there any formal operating procedures. No formal operations manual is available.

4.2 Maintenance of Dam.

The embankment is maintained on an unscheduled and informal basis. Basic maintenance such as mowing the embankment and keeping the spillway clear is performed by the owner at his convenience. Major maintenance such as providing adequate upstream slope protection, restoring the outlet access bridge, and repairing damaged spillway concrete, has been avoided apparently due to the time and cost required to alleviate the conditions. No formal maintenance manual is available.

4.3 Maintenance of Operating Facilities.

No maintenance has apparently been performed on the outlet conduit since the completion of the project.

4.4 Warning System.

No formal warning system is in effect.

4.5 Evaluation.

Routine maintenance of the facility appears adequate; however, installation of adequate riprap, restoration of the outlet conduit access bridge and repairs to concrete surfaces in the spillway are required. Formal manuals of maintenance and operation are also recommended to ensure that all needed maintenance is identified and performed annually regardless of its size and scope. In addition, a formal warning system for the protection of downstream inhabitants should be developed. Included in the plan should be provisions for around-the-clock surveillance of the facility during periods of unusually heavy precipitation.

SECTION 5 HYDROLOGIC/HYDRAULIC EVALUATIONS

5.1 Design Data.

No formal design reports or calculations are available. Information contained in PennDER files indicates the spill-way was designed in accordance with state requirements. The design spillway capacity was reported as 2530 cfs.

5.2 Experience Data.

Information gathered from discussions with the owner indicate the largest flood of record at Macham Dam occurred in October 1975. At that time, flow over the spillway weir was estimated at approximately 1-foot (the spillway provides 5.0 feet of freeboard at the weir). The facility reportedly functioned adequately during the event; however, some damage was incurred when a portion of the discharge end of the spillway was undercut and collapsed. The spillway has been subsequently repaired by removing the damaged concrete section and replacing it with large boulders (see Photograph 5).

5.3 Visual Observations.

On the date of the inspection, no conditions were observed that would indicate the spillway could not function satisfactorily during a flood event, within the limits of its design.

5.4 Method of Analysis.

The facility has been analyzed in accordance with the procedures and guidelines established by the U.S. Army, Corps of Engineers, Baltimore District, for Phase I hydrologic and hydraulic evaluations. The analysis has been performed utilizing a modified version of the HEC-1 program developed by the U.S. Army, Corps of Engineers, Hydrologic Engineering Center, Davis, California. Analytical capabilities of the program are briefly outlined in the preface contained in Appendix D.

5.5 Summary of Analysis.

- a. Spillway Design Flood (SDF). In accordance with the procedures and guidelines contained in the National Guidelines for Safety Inspection of Dams for Phase I Investigations, the Spillway Design Flood (SDF) for Macham Dam ranges between the 1/2 PMF (Probable Maximum Flood) and the PMF. This classification is based on the relative size of the dam (small), and the potential hazard of dam failure due to downstream developments (high). Due to the high potential for damage to downstream structures and possibly loss of life, the SDF for this facility is considered to be the PMF.
- b. Results of Analysis. Macham Dam was evaluated under near normal operating conditions. That is, the reservoir was initially at its normal pool or spillway elevation of approximately 1304.0 feet, with the spillway weir discharging freely. The outlet conduit was assumed to be non-functional for the purpose of analysis. In any event, the flow capacity of the outlet conduit is not such that it would significantly increase the total discharge capabilities of the dam and reservoir. The spillway consists of a rectangular concrete channel with discharges controlled by a broad-crested weir. All pertinent engineering calculations relative to the evaluation of this facility are provided in Appendix D.

Overtopping analysis (using the Modified HEC-1 Computer Program) indicated that the discharge/storage capacity of Macham Dam can accommodate only about 43 percent of the PMF (SDF) prior to embankment overtopping. Under PMF conditions, the low top of dam was inundated for about 4.8 hours, by depths of up to 1.5 feet. Under 0.5 PMF conditions, the dam was inundated for about 1.8 hours and by depths of up to 0.4 feet above the low top of dam (Appendix D, Summary Input/Output Sheets, Sheet G). Since the SDF for Macham Dam is the PMF, it can be concluded that the dam has a high potential for overtopping, and thus, for breaching under floods of less than SDF magnitude.

As Macham Dam cannot safely accommodate a flood of at least 1/2 PMF magnitude, the possibility of embankment failure under floods of less than 1/2 PMF intensity was investigated (in accordance with Corps directive ETL-1110-2-234). Several possible alternatives were examined, since it is difficult, if not impossible, to determine exactly how or if a specific dam will fail. The major concern of the breaching analysis is with the impact of the various breach discharges on increasing downstream water surface elevations above those to be expected if breaching did not occur.

The Modified HEC-1 Computer Program was used for the breaching analysis, with the assumption that the breaching of an earth dam would begin once the reservoir level reached the low top of dam elevation. Also, in routing the outflows downstream, the channel bed was assumed to be initially dry.

Five breach models were analyzed for Macham Dam. First, two sets of breach geometry were evaluated for each of two failure times. The two sets of breach sections chosen were considered to be the minimum and maximum probable failure sections. The two failure times (total time for each breach section to reach its final dimensions) under which the two breach sections were investigated were assumed to be a rapid time (0.5 hours) and a prolonged time (4.0 hours), so that a range of this most sensitive variable might be examined. In addition, an average possible set of breach conditions was analyzed, with a failure time of 2.0 hours (Appendix D, Sheet 16).

The peak breach outflows (resulting from 0.45 PMF conditions) ranged from about 2570 cfs for the minimum section-maximum failure time scheme to about 20,280 cfs for the maximum section-minimum failure time scheme (Appendix D, Sheet 18). The peak outflow resulting from the average breach scheme was about 6180 cfs, as compared to the non-breach 0.45 PMF peak outflow of approximately 2570 cfs (Summary Input/Output Sheets, Sheets O and G).

Two potential centers of damage were investigated in the analysis. The primary area of concern is at Section 6 (see Figure 2), about 5.4 miles downstream from the dam, where a trailer park is located. At this section, the peak water surface elevations corresponding to the maximum section-minimum fail time scheme and the average breach scheme were approximately 3.4 feet and 1.8 feet above the non-breach elevations, respectively, and well above the damage level of the trailers (see Appendix D, Sheet 19).

Another potential center of damage is located at Section 2 (Figure 2), about 3,560 feet downstream from Macham Dam. The nearby residences were found to be well above the maximum levels of the breach outflows. However, a dairy barn was inundated by depths of up to 2.4 feet under the maximum section-minimum fail time scheme, indicating the potential for some property damage should the dam fail (Appendix D, Sheet 19).

The consequences of dam failure can be better envisioned if not only the increase in the height of the floodwave is considered, but also the great increase in momentum of the larger and probably swifter moving volume of water.

Therefore, the failure of Macham Dam would most likely lead to increased property damage and possibly to loss of life in the downstream regions.

5.6 Spillway Adequacy.

As presented previously, Macham Dam can accommodate only about 43 percent of the PMF (SDF) prior to embankment overtopping. Should a 0.45 PMF or larger event occur, the dam would be overtopped and would possibly fail, endangering downstream residences and increasing the potential for loss of life in the downstream regions. Therefore, the spillway is considered to be seriously inadequate.

SECTION 6 EVALUATION OF STRUCTURAL INTEGRITY

6.1 Visual Observations.

a. <u>Embankment</u>. Based on visual observations, the embankment is in fair condition. Significant sloughing and erosion observed along the upstream embankment slope could eventually deteriorate into a major threat to embankment stability, if neglected. Consequently, immediate measures should be taken to repair the slope and adequately protect it against future damage.

b. Appurtenant Structures.

- 1. Spillway. The spillway is considered to be in fair condition. Concrete deterioration, particularly spalling at the joints, is considered significant and should be repaired. Weep holes in the spillway slab should also be cleaned to permit dissipation of uplift pressures.
- 2. Outlet Conduit. Prior to the collapse of the access bridge several years ago the outlet conduit was reportedly functional. In order to operate the conduit presently, divers would be required. A fully functional outlet conduit is considered vital to the safe operation of a water impounding facility. Consequently, repairs to the access bridge and outlet conduit control mechanism are recommended.

6.2 Design and Construction Techniques.

Based on information contained in PennDER files, it appears that the structure was generally designed in accordance with accepted modern engineering practice and techniques; however, no formal design reports or calculations are available for review. Design and/or construction of the soil-cement riprap, outlet works access bridge and spillway end sill are questionable in light of their performance records.

Available correspondence and photographs indicate that the methods of construction, although particularly slow, were found to be acceptable to state inspectors who were charged with reviewing the work. A memo dated June 26, 1970 does note, however, that the quality of concrete work was poor and the embankment fill very rocky. At that time these conditions were found acceptable due to the lack of downstream development. The number of downstream inhabitants

has increased significantly since 1970 with the addition of a trailer park along Wolcott Creek at Greenes Landing.

6.3 Past Performance.

No formal records of past performance are available. Information gathered from discussions with the owner indicate the largest flood of record at Macham Dam occurred in October 1975. At that time, flow over the spillway weir was estimated at approximately 1-foot (the spillway provides 5.0 feet of freeboard at the weir). The facility reportedly functioned adequately during the event; however, some damage was incurred when a portion of the discharge end of the spillway was undercut and collapsed. No other flood damage has ever been recorded.

6.4 Seismic Stability.

The dam is located in Seismic Zone No. 1 and may be subject to minor earthquake induced dynamic forces. As the facility appears well constructed and sufficiently stable, it is believed that it can withstand the expected dynamic forces; however, no calculations and/or investigations were performed to confirm this opinion.

SECTION 7 ASSESSMENT AND RECOMMENDATIONS FOR REMEDIAL MEASURES

7.1 Dam Assessment.

a. <u>Safety</u>. The visual inspection suggests the facility is in fair condition.

The size classification of the facility is small and its hazard classification is considered to be high. accordance with the recommended guidelines, the Spillway Design Flood (SDF) for the facility ranges between the 1/2 PMF (Probable Maximum Flood) and the PMF. Due to the high potential for damage to downstream structures and possible loss of life, the SDF is considered to be the PMF. Results of the hydrologic and hydraulic analysis indicate the facility will pass and/or store only about 43 percent of the PMF prior to embankment overtopping. A breach analysis indicates that failure under less than 1/2 PMF conditions could lead to increased downstream damage and potential for loss of life. Thus, based on the screening criteria contained in the recommended guidelines, the spillway is considered to be seriously inadequate and the facility unsafe, non-emergency.

Deficiences noted by the inspection team included significant sloughing and erosion of the upstream embankment face, a damaged outlet conduit control mechanism and inaccessible manual operator and, a deteriorating concrete spillway.

- b. Adequacy of Information. The available data are considered sufficient to make a reasonable Phase I assessment of the facility.
- c. <u>Urgency</u>. The recommendations listed below should be implemented immediately.
- d. <u>Necessity for Additional Investigations</u>. Additional hydrologic/hydraulic investigations are considered necessary to more accurately assess the adequacy of the spillway system of the facility.

7.2 Recommendations/Remedial Measures.

It is recommended that the owner immediately:

a. Develop a formal emergency warning system to notify downstream residents should hazardous conditions develop. Included in the plan should be provisions for around-the-clock surveillance of the facility during periods of unusually heavy precipitation.

- b. Retain the services of a registered professional engineer experienced in the hydraulics and hydrology of dams to further assess the adequacy of the spillway facilities and take remedial measures deemed necessary to make the facility hydraulically adequate.
- c. Repair the eroded upstream embankment slope and provide adequate riprap material to protect it against future damage.
- d. Repair the damaged outlet conduit control mechanism and re-establish access to the manual operator.
- e. Clean out weep holes, fill and seal all cracks and repair spalled portions of the concrete spillway.
- f. Develop formal manuals of operation and maintenance to ensure the future proper care of the facility.

APPENDIX A VISUAL INSPECTION CHECKLIST AND FIELD SKETCHES

CHECK LIST VISUAL INSPECTION PHASE 1

STATE Pennsylvania COUNTY Bradford	8-56	mall HAZARD CATEGORY High	lear; windy. TEMPERATURE 60° @ 2:00 p.m.	M.S.L.	M.S.L.	SENTATIVES	in			
STATE Per	PENNDER# 8-56	SIZE Small	WEATHER Clear; windy.	1304.1	N/A	OWNER REPRESENTATIVES	Afton Chamberlain			
Macham Dam	NDI # PA — 00043	Earth	DATE(S) INSPECTION 22 April 80	POOL ELEVATION AT TIME OF INSPECTION	TAILWATER AT TIME OF INSPECTION	INSPECTION PERSONNEL	B. M. Mihalcin	Bonk	Spaeder	Veon
NAME OF DAM		TYPE OF DAM Earth	DATE(S) INSPE	POOL ELEVATI	TAILWATER AT	INSPEC	В. М. Ж	D. L. Bonk	D. J. Spaeder	W. J. Veon

EMBANKMENT

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDI# P	NDI# PA - 00043
SURFACE CRACKS	None observed.	
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	None observed.	
SLOUGHING OR ERO- SION OF EMBANK- MENT AND ABUTMENT SLOPES	Erosion and sloughing of the upstream embankment slope observed at and above normal pool level caused by wave action and inadequate slope protection.	rved adeguate
VERTICAL AND HORI- ZONTAL ALIGNMENT OF THE CREST	Horizontal - good. Vertical - good.	
RIPRAP FAILURES	No riprap. Owner claims wave protection was to be provided by soil-cement. Ineffective as evidenced by erosion.	Ьу
JUNCTION OF EMBANK- MENT AND ABUT- MENT, SPILLWAY AND DAM	Good.	

PAGE 2 OF 8

EMBANKMENT

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDI# PA: 00043
DAMP AREAS IRREGULAR VEGETA- TION (LUSH OR DEAD PLANTS)	None observed on downstream face or along immediate toe area.
ANY NOTICEABLE SEEPAGE	None observed.
STAFF GAGE AND RECORDER	None.
DRAINS	None.

PAGE 3 OF 8

OUTLET WORKS

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDI# PA- 00043
INTAKESTRUCTURE	Submerged and unobserved. Steel framed foot bridge that provided access to the outlet conduit control mechanism was reportedly toppled by ice.
OUTLET CONDUIT (CRACKING AND SPALLING OF CON- CRETE SURFACES)	18-inch diameter reinforced concrete pipe embedded within the embankment and not observed.
OUTLET STRUCTURE	Concrete headwall in good condition. Stilling basin not constructed as shown on design drawings.
OUTLET CHANNEL	Partially rock lined ditch. Unobstructed.
GATE(S) AND OPERA- TIONAL EQUIPMENT	18-inch diameter stainless steel sluice gate. Operating stem bent when bridge toppled. Operation would presently require divers.

PAGE 4 OF 8

EMERGENCY SPILLWAY

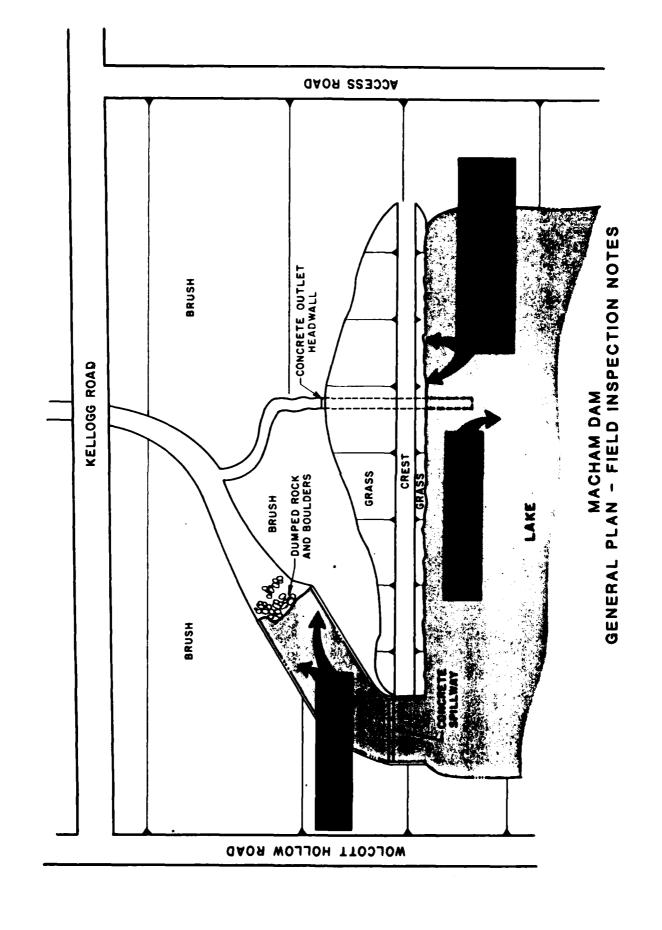
ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDI# PA: 00043
TYPE AND CONDITION	Uncontrolled, rectangular, concrete chute channel with a broad crested weir. Fair condition. Significant concrete deterioration in the form of cracking and spalling was observed.
APPROACH CHANNEL	No actual approach channel; however, the concrete overflow weir is quite broad (35 foot breadth) and may account for some head losses.
SPILLWAY CHANNEL AND SIDEWALLS	Channel concrete cracked in many areas. End sill undercut and failed during flood of October 1975. Weep holes clogged with debris. Surface moderately scaled. End section of right channel sidewall rotated and spalled.
STILLING BASIN PLUNGE POOL	None.
DISCHARGE CHANNEL	Lined with dumped rock reportedly in accordance with state recommendations subsequent to severe undercutting that resulted in the partial collapse of the spillway channel floor slab.
BRIDGE AND PIERS EMERGENCY GATES	None.

PAGE 5 OF 8

SERVICE SPILLWAY

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDI	NDI# PA- 00043
TYPE AND CONDITION	N/A	
APPROACH CHANNEL	N/A .	
OUTLETSTRUCTURE	N/A	
DISCHARGE CHANNEL	N/A	

PAGE 6 OF 8


INSTRUMENTATION

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDI#PA - 00043	00043
MONUMENTATION SURVEYS	None.	
OBSERVATION WELLS	. None.	
WEIRS	. None.	
PIEZOMETERS	None.	
OTHERS	None.	

PAGE 7 OF 8

RESERVOIR AREA AND DOWNSTREAM CHANNEL

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDI#PA- 00043
SLOPES: RESERVOIR	Steep and primarily forested.
SEDIMENTATION	None observed.
DOWNSTREAM CHAN- NEL (OBSTRUCTIONS, DEBRIS, ETC.)	Culvert beneath Kellogg Road located several hundred feet downstream of the dam.
SLOPES: CHANNEL VALLEY	Narrow valley with steep confining slopes.
APPROXIMATE NUMBER OF HOMES AND POPULATION	At Greenes Landing, approximately 5 miles downstream of the dam, a mobile trailer park is located adjacent the stream. It is estimated that about 50 persons could inhabit this area.

`=========					
	 -	+		=+=+=	
			6+		
	 	- -			
			21		Q
	 	1 1 0 /			
					4
	 	+ - + - + - + - + - + - + - + - + - + -			
					N N N N N N N N N N N N N N N N N N N
		+			
		+ + - +			8
		 		SCALE	
		 ==== ====			
			\$ 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
			€ 6		
			0 04		
			# W / Y		
	1 >				
	6				
	X W W W		3 4 7		
	1 41		80 1		
			a () 186 0-2		
7					
4				EST	
4				, O SE	
4				4 7	
4				304.0	
MACH A W			S S S S S S S S S S S S S S S S S S S	₹ <u>₽</u>	
4				₹ <u>₽</u>	
4				3 C	
4			5	E 12	
4			5	₹ <u>₽</u>	
4			51 X X X X X X X X X X X X X X X X X X X	E 12	
			51 X X X X X X X X X X X X X X X X X X X	PELEN 13	
			STANSWENT OF THE PROPERTY OF T	PELEN 13	
			STANSWENT OF THE PROPERTY OF T	S SBILLWAY	
			STANSWENT OF THE PROPERTY OF T	PELEN 13	
			STANSWENT OF THE PROPERTY OF T	S SBILLWAY	
			STANSWENT OF THE PROPERTY OF T	S SPILLWAY	
			STANSWENT OF THE PROPERTY OF T	S SPILLWAY	
				Sellenda Bellenda	
			S THE WAY WIND TO SEE THE SEE	S SPILLWAY	
	8		STANKING AND	Sellenda Bellenda	
			STANKING AND	PELENAX	
	8		SHAWSWALVES AND SERVICE AND SE	A ABILL WAY	
			STANDARY WINGHAM	A ABILL WAY	
			STANDARY WINGHAM	S SPILLWAY	
			STANDARY WINGHAM	A ABILL WAY	
			STANDARY WINGHAM	S SPILMAN	
			TY ENT TO SERVING WING WALLS	A ABILL WAY	
			TY ENT TO SERVING WING WALLS		
			TY ENT TO SERVING WING WALLS	PELEVAX	
			ABUTWENT SPRINGWALS ABUTWENT SPRINGWALS	PELEVAX	
			ABCTMENT SPANTWANGWALS	PELEV.3	
			ABCTMENT SPANTWANGWALS	PELEVAX	
	1 2 3 3 3 3 3 3 3 3 3 3		ABCTMENT SPANTWANGWALS	A SHILWAY	
	8		ABCTMENT SPIN WANGWALLS	PELEVAX	

APPENDIX B
ENGINEERING DATA CHECKLIST

CHECK LIST ENGINEERING DATA PHASE I

NAME OF DAM Macham Dam

ITEM	REMARKS NDI# PA . 00043
PERSONS INTERVIEWED AND TITLE	Afton Chamberlain - Owner
REGIONAL VICINITY MAP	See Figures 1 and 2, Appendix E.
CONSTRUCTION HISTORY	Constructed by Manley and Afton Chamberlain between the years 1966 and 1970. See Section 1.2.g.
AVAILABLE DRAWINGS	See Figures 3, 4, 5 and 6, Appendix E. Original drawings are available from both the owner and the PennDER.
TYPICAL DAM SECTIONS	See Figure 5, Appendix E.
OUTLETS: PLAN DETAILS DISCHARGE RATINGS	See Figures 4 and 5, Appendix E. Discharge rating curves are not available.

PAGE 1 OF 5

CHECK LIST ENGINEERING DATA PHASE I (CONTINUED)

ITEM	REMARKS NDI# PA · 00043
SPILLWAY: PLAN SECTION DETAILS	See Figure 4, Appendix E.
OPERATING EQUIP. . MENT PLANS AND DETAILS	See Figure 5, Appendix E.
DESIGN REPORTS	None available.
GEOLOGY REPORTS	General geology included in a report contained in PennDER files entitled "Soils and Foundation Report on Site of Proposed Macham Dam" dated October 11, 1965 by Herluf T. Larsen of Harrisburg, Pennsylvania.
DESIGN COMPUTATIONS: HYDROLOGY AND HYDRAULICS STABILITY ANALYSES SEEPAGE ANALYSES	None available.
MATERIAL INVESTIGATIONS: BORING RECORDS LABORATORY TESTING FIELD TESTING	See "Soils and Foundation Report"

PAGE 2 OF 5

CHECK LIST ENGINEERING DATA PHASE I (CONTINUED)

ITEM	REMARKS NDI#PA · 00043
BORROW SOURCES	Within reservoir. See "Soils and Foundation Report"
POST CONSTRUCTION DAM SURVEYS	None since construction.
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	None.
HIGH POOL RECORDS	l-foot over spillway in October 1975. Caused undermining of spillway discharge end.
MONITORING SYSTEMS	None.
MODIFICATIONS	None.

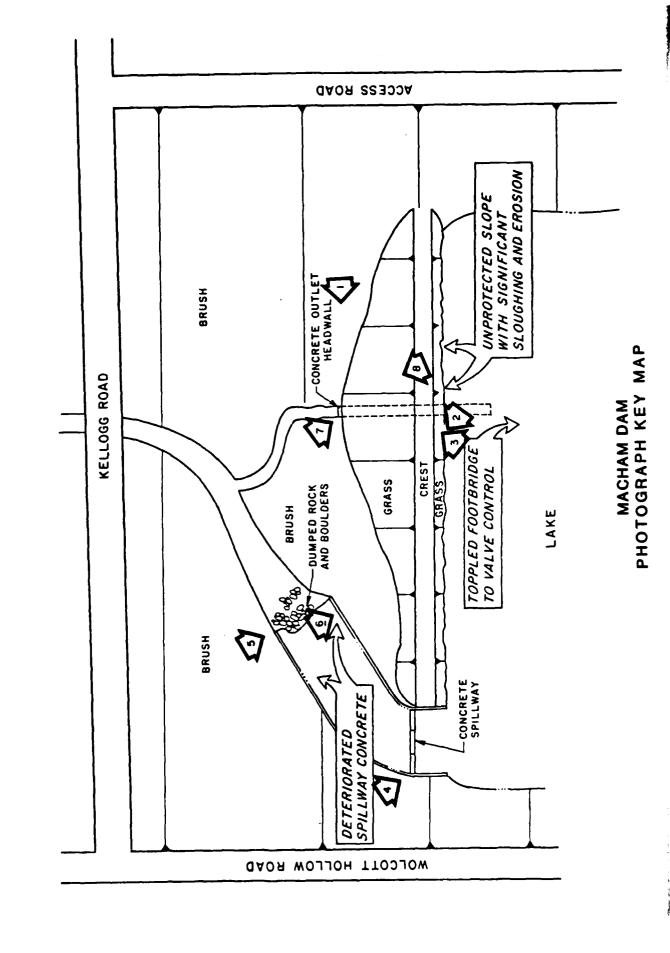
PAGE 3 OF 5

CHECK LIST ENGINEERING DATA PHASE I (CONTINUED)

ITEM	REMARKS NDI# PA · 00043
PRIOR ACCIDENTS OR FAILURES	Spillway damaged during flood of October, 1975.
MAINTENANCE: RECORDS MANUAL	No formal records or manual.
OPERATION: RECORDS MANUAL	No formal records or manual. Control gate reportedly last opened in 1976. Access bridge reportedly toppled by ice. Photos in PennDER files indicate bridge down since mid-1973.
OPERATIONAL PROCEDURES	Self-regulating.
WARNING SYSTEM ANDIOR COMMUNICATION FACILITIES	None.
MISCELLANEOUS	

GAI CONSULTANTS, INC.

CHECK LIST HYDROLOGIC AND HYDRAULIC ENGINEERING DATA


NDI ID # PA-00043 PENNDER ID # 8-56

PAGE 5 OF 5

SIZE OF DRAINAGE AREA: 2.5 square miles.
ELEVATION TOP NORMAL POOL: 1304.0 STORAGE CAPACITY: 310 acre-feet.
ELEVATION TOP FLOOD CONTROL POOL: STORAGE CAPACITY:
ELEVATION MAXIMUM DESIGN POOL: 1309.0 STORAGE CAPACITY: 550 agre-feet.
ELEVATION TOP DAM: 1309.0 STORAGE CAPACITY: 550 acre-feet.
SPILLWAY DATA
CREST ELEVATION: 1304.0 feet.
TYPE: Uncontrolled, rectangular, concrete chute channel.
CREST LENGTH: 75 feet.
CHANNEL LENGTH: 140 feet (includes approach and discharge channels).
SPILLOVER LOCATION:Left abutment.
NUMBER AND TYPE OF GATES:
AUTI ET WARKS
OUTLET WORKS
TYPE: 18-inch diameter reinforced concrete pipe.
LOCATION: Near embankment center.
ENTRANCE INVERTS: 1290.5 feet.
EXITINVERTS: 1289.5 feet.
EMERGENCY DRAWDOWN FACILITIES: 18-inch diameter stainless steel gate valve at inlet end.
HYDROMETEOROLOGICAL GAGES
TYPE: None.
LOCATION:
RECORDS: -
MAXIMUM NON-DAMAGING DISCHARGE: Not known.

APPENDIX C

PHOTOGRAPHS

View of the downstream embankment face looking toward the left abutment. PHOTOGRAPH 1

View of the upstream embankment face as seen from the right abutment. PHOTOGRAPH 2

Close-up view of erosion along the upstream embankment face above normal pool level. PHOTOGRAPH 3

View of the emergency spillway and a portion of the reservoir as seen from the left abutment. PHOTOGRAPH 4

View of the damaged discharge end of the emergency spillway. PHOTOGRAPH 5

View of a deteriorated portion of the spillway right wingwall. PHOTOGRAPH 6


View of the discharge end of the outlet conduit. PHOTOGRAPH 7

View of the outlet conduit discharge channel as seen from the embankment crest. PHOTOGRAPH 8

APPENDIX D
HYDROLOGY AND HYDRAULICS ANALYSES

PREFACE

The modified HEC-1 program is capable of performing two basic types of hydrologic analyses: 1) the evaluation of the overtopping potential of the dam; and 2) the estimation of the downstream hydrologic-hydraulic consequences resulting from assumed structural failures of the dam. Briefly, the computational procedures typically used in the dam overtopping analysis are as follows:

- a. Development of an inflow hydrograph(s) to the reservoir.
- b. Routing of the inflow hydrograph(s) through the reservoir to determine if the event(s) analyzed would overtop the dam.
- c. Routing of the outflow hydrograph(s) from the reservoir to desired downstream locations. The results provide the peak discharge(s), time(s) of the peak discharge(s), and the maximum stage(s) of each routed hydrograph at the downstream end of each reach.

The evaluation of the hydrologic-hydraulic consequences resulting from an assumed structural failure (breach) of the dam is typically performed as shown below.

- a. Development of an inflow hydrograph(s) to the reservoir.
- b. Routing of the inflow hydrograph(s) through the reservoir.
- c. Development of a failure hydrograph(s) based on specified breach criteria and normal reservoir outflow.
- d. Routing of the failure hydrograph(s) to desired downstream locations. The results provide estimates of the peak discharge(s), time(s) to peak and maximum water surface elevations of failure hydrographs for each location.

HYDROLOGY AND HYDRAULIC ANALYSIS DATA BASE

NAME OF	DAM:	MACHAM D	AM				
PROBABLI	E MAXIMUM	PRECIPITATION	(PMP) =	22.2	INCHES/24	HOURS	(1)

STATION	. 1	2	3
STATION DESCRIPTION	Macham Dam		
DRAINAGE AREA (SQUARE MILES)	2.4		
CUMULATIVE DRAINAGE AREA (SQUARE MILES)	-		
ADJUSTMENT OF PMF FOR DRAINAGE AREA LOCATION (%) 6 HOURS 12 HOURS 24 HOURS 48 HOURS 72 HOURS	114 123 132 138		
SNYDER HYDROGRAPH PARAMETERS ZONE (2) Cp (3) Ct (3) L (MILES) (4) L _{Ca} (MILES) (4) tp = Ct (L·L _{Ca}) ^{0.3} (HOURS)	11 0.62 1.50 2.2 1.0 1.90		
SPILLWAY DATA CREST LENGTH (FEET) FREEBOARD (FEET)	75 5.0		

⁽¹⁾ HYDROMETEOROLOGICAL REPORT 40, U.S. WEATHER BUREAU, 1965.

 $^{^{(2)}}$ Hydrologic zone defined by corps of engineers, baltimore district, for determination of snyder coefficients (cp and ct).

⁽³⁾ SNYDER COEFFICIENTS

 $^{^{(4)}}$ L = LENGTH OF LONGEST WATERCOURSE FROM DAM TO BASIN DIVIDE. L_{Ca} = LENGTH OF LONGEST WATERCOURSE FROM DAM TO POINT OPPOSITE BASIN CENTROID.

MACHAM DAM

CHKD. BY WIV DATE 6-3-30 SHEET NO. 1 OF 19

Engineers • Geologists • Planners Environmental Specialists

DAM STATISTICS

- HEKHT OF DAM = 19 FT

(FIELD MEASURED : DOWNSTREAM
OUTLET INVENT TO LOW TOP OF DAM

-NORMAL POOL STANGE CAMETY = 101 X106 SALLOWS

= 310 ACRE-FEET

(SEE NOTE 1)

-MAXIMUM POOL STAPPER CHARLITY = 550 DORE-FEET
(@LOW TOP OF DAM)

(SHEET 4)

- DRAMAGE AREA = 2.4 SQ. MI.

(PLANIMETERE) ON 7.5' U.S.S.S. TOPO SUMPS, SAME AND BENTLEY CREEK, PA)

ELEVATIONS:

Top of Dan (DESIGN) = /309.0 (FIG. 7, SEE NOTE ?)

Top of Dan (FIELD) = /309.0

NORMAL POOL = /304.0 (FIG. 3, SEE NOTE ?)

DOLLASTICION INCET INVERT (DESIGN) = 1290.5 (FIG. 5, SEE NOTE 2)

DOLLASTICION OUTLET INVERT (DESIGN) = 1289.7 (FIG. 5, SEE NOTE 2)

Drawstream Juriet Invent (FIELD) = 1281.9

STRESHOOD AT DAM CENTERLINE = 13420 (FIS. 6, JEE 150 = 3)

MOTE 1: OCTAINED FROM REPORT NOW THE APPLICATION OF MANUEL AND

AFTEN CHAMBERLAIN, TO CONSTRUCT AND MAINTAIN A DAM ACTUS

WOLCOTT CREEK IN ATMENS TOWNSHIP STATEMO SOUTH, MAY 13, 1766;

FOMO IN PENN JER FILES.

SUBJECT	DAM SAFETY INSPECTION	
	MACHAM DAM	
BY	DATE PROJ. NO	CONS
CHKD. BY WJV	DATE	Engineers • Geolog

CONSULTANTS, IN
Engineers • Geologists • Planners
Environmental Specialists

NOTE & DESIGN DRAWNES ARE BASED ON A NORMAL POOL OR SPILLWAY

ELEVATION OF 100.0 FEET. THE USGS TOPO QUAD FOR SAVER, PA,

INDICATES THAT THE NORMAL POOL ELEVATION IS SOMEWHERE DETWEEN

1880.0 AND 1330.0. THE RESERVOR SURFACE AREA AT ELEVATION

96.0, AS PLANIMETERED ON FIGURE 3, IS APPROXIMATELY 3T ACCES,

WHICH IS ALSO THE VALUE OBTAINED AT ELEVATION 1300.0 IN THE

USGS TOPO MAP. THUS, IT WILL BE ASSUMED THAT ELEVATION 96.0 ON

THE RESIGN DRAWINGS CHRESPADS TO ELEVATION 1300.0 ON THE

USGS TOPO MAP. THEREFORE, A VALUE OF 1204.0 HAS BEEN ADDED

TO ALL THE REPORTED ELEVATIONS ON THE DESIGN TRAININGS. IT

IS NOTED THAT THE ELEVATIONS USED IN THIS AVAILUES. ACCE

CONSIDERED ESTIMATES, AND ARE NOT NECESSARILY ACCURATE.

DAM CLASSIFICATION

DAM SIZE: SMALL

(REF 1 , TABLE 1)

HAZARD CLASSIFICATION: HIGH

(FIELD DOSERMON)

REQUIRED SOF: SPMF TO PMF

(REF 1, TABLE 3)

HYDROGRAPH PARAMETERS

- LENGTH OF LONGEST WATERCOURSE: L= 2.3 MILES

- LENGTH OF LONGEST WATTROURSE FROM DAM
TO A POINT OPPOSITE RASIN CENTROID: LCA = 1.0 MILE

(MEASURET ON IC.
TOPO QUED, SAKE,
MO BENTLET CREEK, F-

MACHAM DAM

3Y _______ DATE _________

Engineers • Geologists • Planners Environmental Specialists

 $C_{p} = 1.50$ $C_{p} = 0.62$ (SUPPLIED BY C.O.E., BONE 11,
SUSQUENAMO RIVER CASIN)

SNADER'S SAMBARD LAG: tp = C= (L·Lca) 0.3 = 1.50(2.2 x 1.0) 0.3 = 1.90 HOURS

(NOTE: HYDROGRADH VARIABLES USE HERE ARE DEFINED IN REF 2,)

RESERVOIR CAPACITY

RESERVOIR JURFACE AREAS:

fisi	FRIOR ELSUATION (ET)	SWEFACE AREA *
	1290.0	0
	1292 0	/
	12940	7
	13960	19
	1348.3	29
	13000	27
	1303.3	71
(POOL)	1334.0	44
	/330.0	68

* - SURFACE AREAS AT OR CECON ELECUATION 1534.0 (MORMAL POOL) PLANMETERED ON FIS. 3 (SEE NOTE 2); S.A. AT ELEN 1320 MEASURED ON USSS FORD QUESS: SAYRE AND BENTLEY CREEK, PA.

JBJEC	T	DA	M SAFETY	INSPEC	TION
			MACHAM [)AM	
	27.5	DATE	5-17-80	PROJ. NO.	79-203-043

CHKD. BY WJV DATE 6-3-90 SHEET NO. 4 OF 19

Engineers • Geologists • Planners Environmental Specialists

IT IS ASSUMED THAT THE MODIFIED PRISMODAL RELATIONSHIP ADEQUATELY MODELS THE RESERVOIR SURFACE AREA — STORAGE RELATIONSHIP.

SINCE THE CAMBUTY AT NORMAL POOL IS KNOWN, THE CALCULATED VOLUMES CAN BE ADJUSTED ACCORDINGLY.

$$\Delta V_{1-2} = \frac{h}{3} \left(A_1 + A_2 + \sqrt{A_1 \cdot A_2} \right)$$
 (REF 14, p. 15)

 $\Delta N_{1-2} = NOCEMENTAL VOLUME DETWEEN ELEVATIONS 1+2, IN AC-FT,$ <math>h = ELEVATION 1 - ELEVATION 2, IN FT, $A_1 = SURFACE AREA AT ELEV 1, IN ACRES,$ $A_2 = SURFACE AREA AT ELEV 2, IN ACRES.$

ALSO, IT WILL BE ASSUMED THAT THE SURFACE AREA VARIES LINEARLY DETWEEN ELEVATIONS 1304.0 AND 1300.0.

ELEVATION - STORAGE TABLE :

WHERE

Sez	ervdir ecenation (et)	A (PCRES)	۵۷,-ع (۹۲-۶۲)	INITIAL CALCULATED TOTAL NOWME (PC-ET)	ADJUSTED (AC-RT)
	0.0961	0		-	0
	1292.0	/	0.7	0.7	/
	1294.0	フ	7.1	7.8	8
	1296.0	19	25.0	JJ. 8	<i>3</i> 3
	/293.0	29	47.6	80.4	81
	/300.0	37	65.8	146. 2	147
	1302.0	41	78.0	⊋a∀. 2	225
(POG L	1304.0	44	85.0	J09. P	310
	1306.0	47	91.0	400. 2	400
(OF DAM)	/309.0	52	148.4	548.6	549
	1310.0	53	52.5	601.1	601
	1311.0	55	54.0	655.1	65
	1312.0	56	55.5	710.6	7//
	1313.0	58	57.0	767.6	768
	1314.0	59	58.5	826.1	826

JBJECT		TY INSPECTION	
BY	DATE	PROJ. NO	CONSULTANTS, I
CHKD, BY WJV	DATE 6-3-90	SHEET NO OF	Engineers • Geologists • Planners Environmental Specialists
_			

- O SUPPOCE MEAS TAKEN FROM SWEET 3. BETWEEN ELENATIONS 1304

 AND 1330, SURFACE AREAS CALCULATED OF LINEAR INTERFOLATION.
- $\begin{array}{lll}
 \boxed{3} & \text{ADTUSTED FINAL VOLUME} \\
 (BELOGI NORMAL POOL) & INITIAL CALCULATED VOLUME X <math>\left(\frac{KNOWN VOL. @ NORMAL POOL}{WITIAL CALC VOL. @ NORMAL P:}\right) \\
 &= INITIAL CALC. VOL. X <math>\left(\frac{310}{309.9}\right)
 \end{array}$
 - ZERO STORAGE ELEVATION TAKEN FROM FIG. 5 (SEE NOTE 2).

PMP CALCULATIONS

- FROM REF. 9, FIG. 2, OUTAIN PMP VALUE FOR A RASIN OF DRAINAGE AREA $\frac{200}{2}$ Sq. MI., 24 HOUR DURATION: $P = \frac{20.2}{2}$ IN.
- FROM REF 9, FIG. 1, GEOGRAPHIC ADJUSTMENT FACTOR = 97% (@ N41°-55.3', W76°-37.4')
- AREA CONNECTION FACTOR (REF 9):

DARATION (HRS): 6 12 24 43 72

FACTOR (4): 117.5 127.0 136.0 142.5 145.0

- TOTAL COMMECTION FACTOR (0.97 X AREA CORRECTION FACTOR):

DURATION (MRS): 6 12 24 48 72 FACTOR (40): 114 123 132 138 141

- HOP BROOK FACTOR (NOTUSTMENT FOR RASIN SHAPE AND FOR THE LESSER LIKELIHOOD OF A SEVERE STORM CENTERING OVER A SMALL CASIN)
FOR A DRAINAGE AREA OF 05 SQUALE MILES IS 0.80

(REF 4, p. 48)

UBJECT		DAM SAFF	TY INSPE	CTION	_ (in	
		MAC	AM DAM			
BY	DATE	5-19-80	PROJ. NO	79-303-043	4.	CONSULTANTS, I
CHKD. BY WJ	DATE	6-3-90	SHEET NO	6 OF 19		rs • Geologists • Planners nental Specialists
SF	PILLWAY CA	PACITY				
	_					S BASED ON PEOD
	PROFILE :		al.		MEASURI	EMBUTS AUD FIE. 4)
•	ENTRANCE SPIC		700 00 0	.5.	LEU. 1304.0	
						(NOT TO MCALE)
-	-	TOP OF DAM -	75'	35'	HANNEL GUTRANC LEFT ABUTMEN	
					(no	OT TO SCALE)
CRO	SS-SECTION	<i>:</i>				
(соак <i>ны</i> с ур <u>г</u> т	(DAM @ 1309.0) - EMBANKMEN REAM)) /N	SPILLMAY CREST TO	130 (CEN) 1304.0	OF CEFT JOHNSON - CEFT ABUTMENT
			 	701	-	>

(NOT TO SCALE)

.UBJECT		DAM SAFETY	INSPECTION	n .]
		MACHAM I)AM	
BY	DATE	5-19-50	PROJ. NO	
CHKD. BY WJV	DATE	6-3-30	SHEET NO OF 9	Engineers • Environment

Engineers • Geologists • Planners Environmental Specialists

THE SALLWAY ESSENTIALLY CONSISTS OF A BROAD-CRESTED WEIR WHICH DISCHARGES INTO A RECTANGULAR CONCRETE CHANNEL, AS SHOWN ON SHEET 6.

DISCHARGE OVER THE USER CAN DE ESTIMATED BY THE RELATION:

(REF 5, p. 5-23)

WHERE

Q = DISCHARGE OVER THE WEIR, IN CFS,

H = EFFECTIVE HEAD ON THE WEIR, IN FT,

L = LENGTH OF WER CREST = 75 FT,

C = COEFFICIENT OF DISCHARGE. IT WILL BE
ASSUMED THAT CRITICAL FLOW DOCUMES NEAR THE

STILLWAY CESST; THUS, C = 3.087. (RE= 5, p. 5-24).

APPROACH LOSSES: SPILLWAY CHANNEL: ESTIMATE LOSSES AT ELEU 1339.1, OR

LENGTH OF CHANNEL = 35 FT

WIDTH OF CHANNEL = 75 FT

AT ELEV. 1309.1,

ANG. DEDTH = 5.1 FT,

: FLOW AREA = (5.1)(75) = 382.5 FT

- INITIAL ESTIMATE OF DISCHARGE:

- AVERAGE VEROCITY IN CHANNEL:

$$V = \frac{9}{4} = \frac{3667}{582.5} = \frac{70}{70} \text{ FPS}$$

Engineers • Geologists • Planners Environmental Specialists

- Assume THAT THE ENTRANCE LOSS = 0.1 ha (REF 4, p. 379),

he = 0.1 ha = 0.1 (0.76) = 0.38 FT.

SHEET NO. ____ 8 ___ OF __ 19__

- CALCULATE FRICTION LOSS , he:

(REF 4, p. 379)

WHERE L= LENGTH OF CHANNEL = 35 FT,

N = MANNING'S ROUGHNESS CREEKIGENT = 0.015

R = HYDRAUUC RADIUS = FLOW AREA / WESTED PERCINETER.

- WETTED PERMETER:

CHKD. BY WJV DATE ____ 6-3-90

ANG. HT DE UINGWALL =
$$\frac{\left[\left(\frac{5.1+3.5}{3} \right) (s) + (5.1)(15) + (3.6)(15) \right]}{35}$$

$$= 3.9 = 7$$

$$h_F = \left[\frac{(7.0)(0.015)}{(1.486)(4.6)^{25}} \right]^2 \times 35 = 0.00 FT$$

: he + h = 0.08 +0.02 = 0.10

EFFECTIVE HEAD He = 5.1 - 6.1 = 5.0 FT

Q = (3.087)(75)(5.0) 23 = 3590 055

JBJECT _			DAM SAFET	Y INSP	ECTI	ON	
			MACHAM	DAM			
BY	275	DATE	5-19-80	PROJ. NO.	<u> 19 - 20</u>	3-043	
CHKD. BY	YEW	DATE	6-3-90	SHEET NO	٩	OF 19	

Engineers • Geologists • Planners Environmental Specialists

FOR OTHER HEADS, THE APPROACH LOSSES ARE ASSUMED TO BE PROPORTIONAL TO THOSE CALCULATED ABOVE:

WHERE he = TOTAL APPROACH LOSS

H = RESERVOIR ELEVATION - 1304.0

EFFECT OF DOWN STREEM APPON INTERFERENCE:

BECAUSE OF THE POSITION OF THE ARROW FLOOR IN RELATION TO THE OREST, THERE IS THE POSSIBILITY OF APRON INTERFERENCE, WHICH WOULD REDUCE THE DISCHARES CAMBBILITIES OF THE SPILLWAY.

IT WILL BE ASSUMED THAT TAILWATER EFFECTS ARE NEGLIGIBLE, AND THUS, THE ONLY DOWNSTREAM EFFECTS WILL BE DUE TO APRON INTERFERENCE. AT ELEVATION 1309.1,

$$\frac{h_d + d}{He} = \frac{7.15}{5.0} = 1.43$$

WHERE HE = EFFECTIVE MEAD ON WERE CREST, IN FT,

ha + d = He + 2.15 (SEE SHEET 6 AND REE 4, FIG. 253).

ASSUMING THAT THE RELATIONSHIP GIVEN IN REF 4, FIG. 253, FOR OGEE WERS, MAY BE APPLIED HERE:

FOR $\frac{hd+d}{He} = 1.43$, $\frac{C_s}{C} = 0.97$

WHERE C'S = COEFFICIENT OF DISCHARGE CONDUCTED FOR AND ECTET,

C = 3.087.

: C3 = (0.97)(3.087) = 2.99

.: Q = (2.99)(75)(50) 3/3 = 2510 CFS

SHEET NO. 10 OF 19

6-3-90

CONSULTANTS, IN

Engineers • Geologists • Planners Environmental Specialists

SPILLWAY RATING TABLE :

CHKD. BY WJV DATE

	RESERVOIR ELEVATION (FT)	H (F7)	0 الم (147)	(FT)	h4+ d HE (FT)		9 © C ₅	Q (c=s)
	1304.0	0	_	-	_	_	_	0
	1305.0	1.0	0.02	0.98	3.19	1.00	3.0 9	220
	1306.0	20	0.04	1.96	2.10	1.00	3.09	640
	1307.0	30	0.06	2.94	1.73	1.00	3.09	1170
_	1308.0	4.0	0.08	3.92	1.55	0.99	3.06	1780
	7)1309.0	5.0	0.10	4.90	1.44	0.97	2.99	2430
(UND OR	·)/309./	5.1	0.10	5.00	1.43	0.97	2.99	2510
	1309.5	5.5	0.11	5.39	1.40	0.96	2.96	2780
	1310.0	6.0	0.12	5.88	1.37	0.96	2.96	3/70
	1310.5	6.5	0.13	6.37	1.34	0.95	2.93	3530
	1311.0	7.0	0.14	6.86	1.3/	0.94	2.90	3910
	1312.0	8.0	0.16	7.84	1.27	0.93	2.87	4730
	13/3,0	9.0	2.18	8.82	1.24	0.72	2.84	<i>5</i> 580
	1314.0	10. O	0.20	9.80	1. 22	0.91	2.81	6470

JBJECT DAM SAFETY INSPECTION

MACHAM DAM

7 255 DATE 5-30-80 PROJ. NO. 79-303-043

Engineers • Geologists • Planners Environmental Specialists

EMBANKMENT RATING CURVE

- ANSUMB THAT THE EMPANKMENT DEHAVES ESSENTIALLY AS A ROOMD-CRESTED WERE WHEN OUERTOAPING OCCURS. THUS, THE DISCHARGE CAN BE ESTIMATED BY THE RELATIONSHIP

WHERE Q = DISCHARGE OVER EMBANKMENT, IN CAS,

L = LENGTH OF EMBANKMENT OVERTONDED, IN FT,

H = HEAD ON WERE, IN PEST; IN THIS CASE IT IS THE AVERAGE "FROW-AREA" WERENTSD HEAD ABOVE THE CREST, USING THE LOW TOD ON THE DAN AS A DATUM;

C = CONFICIENT OF DISCHARGE, DEPENDENT UPON THE WEAT AND THE WERE CASADTH.

LENGTH OF EMBANKMENT INMONTED

15. RESERVOIR ELEVATIONS:

RESERVOIR ELEVATIONS (FT)	EMDANKACAT LENGTH (FT)	
/309.0	100	
1309.1	<i>350</i>	
1309. 2	400	
/309.3	500	
1309.5	510	(From FIELD SURVEY AND
1310.0	530	USGS TOPO QUAD : SAYRE, MA;
1310.5	540	AT SIDE SLOPES = 9:1
/3/1.0	560	LT SIDE SLOPES = 22:1)
1312.0	590	
1313.0	690	
1314.0	650	

JBJECT	DAI	M SAFE	TNS	PECTION
		MACHAM I	DAM	
BY	DATE	5-20-80	PROJ. NO	79-203-043
CHKD. BY WJV	DATE	<u> </u>	SHEET NO	12 OF 19

Engineers • Geologists • Planners Environmental Specialists

Assume that incremental discharges for successive reservoir elimations are approximately transformed in cross-sectional flow area. Then any incremental area of flow can be estimated as $H: [(1,+1_0)/0]$, where $L_1 = LENGTH$ of overtopped embanilment at hister elevation, $L_2 = LENGTH$ at lower elevations, H: = Difference in elevations. Thus, the total average "flow-are-)" weighted mead can be estimated as $H_W = (Total Flow Alea/L_1)$.

EMBANKMENT RATING THOUS:

RESERVOIR ELEVATION	L,	٤٦	INCREMENTAL HEAD, HE	INCREMENTAL FLOW AREA, AL	TOTAL FLOW AKTA, AT	HEVD' H MEIENLE) ©	9 0
(FT)	(FY)	(FT)	(FT)	(543)	(673)	(F7)			(crs)
1309.00	٥	-		_	_	_		_	
1309.01	100	0	0		-	-		-	0
1309.1	350	100	0.1	23	23	0.1	2.91	2.73	30
1539.2	400	350	0.1	38	61	2.2	0.11	2.97	110
1309.3	200	400	0.1	45	106	0.2	0.31	2.17	130
1309.5	510	500	0.2	101	207	0.4	0.03	3.31	390
1310.0	530	510	0.5	260	467	0.9	0.06	3.33	1370
1310.5	540	530	0.5	268	735	1.4	0.39	3.34	2750
1311.0	560	540	0.5	275	1010	1.8	0.12	3.34	4110
1312.0	590	560	1.0	575	1525	2.7	0.18	3.57	8040
1313.0	620	590	1.0	605	2190	3.5	0.23	3.38	12,500
1314.0	య	620	1.0	635	2825	4.3	0.29	3.09	17,910

[@] Hw = AT/LI

^{1 1 =} DREADTH OF CREST = 15 FT (FIELD MEASURED)

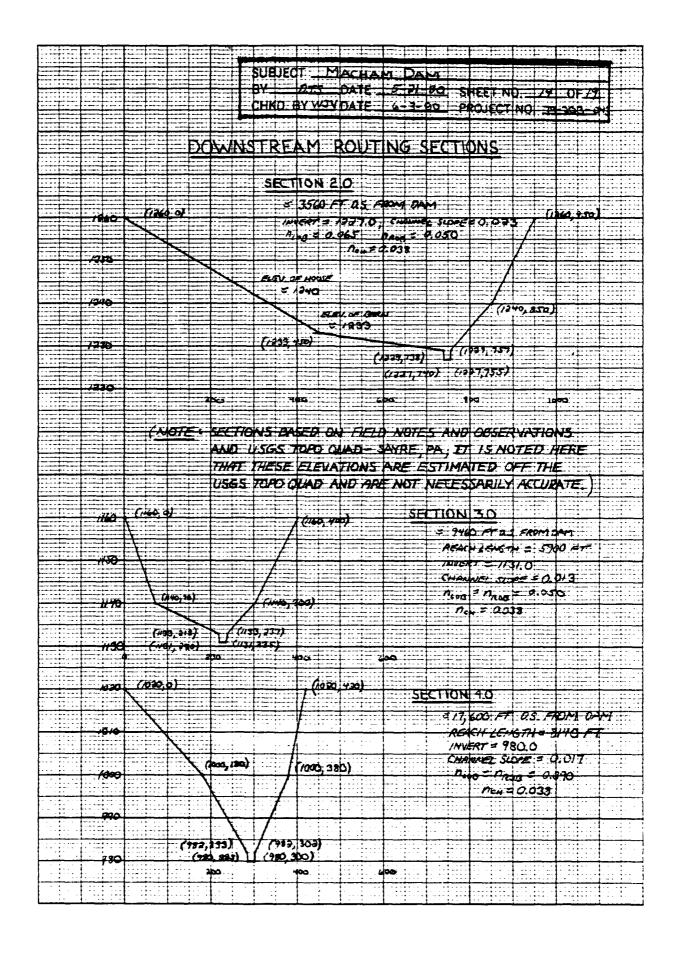
UBJECT _____ DAM_SAFETY INSPECTION _____

CHKD. BY WTV DATE __ G-3-90

SHEET NO. ___/3__ OF __/9__

Engineers • Geologists • Planners Environmental Specialists

TOTAL FACILITY RATING TABLE

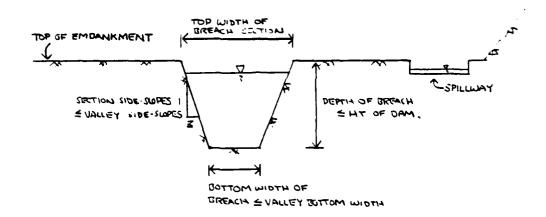

Groral = General + GENERALMENT

	RESERVOIR ELEVATION	Q Qspillmay	© EMBANIMENT	Q TOTAL
	(FT)	(cFS)	(°FS)	(c=s)
	1304.0	0	_	0
	1305.0	220		220
	1306.0	. 640	-	640
	1307.0	1170	_	//70
/ 1011 mm 1	1308.0	1780	_	<i>178</i> 0
(100 FOD	1309.0	2430	0	3430
	1309.1	2510	30	2540
	1309.2	2580 *	//0	2690
	1309.3	2650 *	130	2780
	1309.5	2780	390	3170
	1310.0	3/70	1370	4540
	1310.5	3530	2720	6250
	1311.0	3910	4110	8020
	1312.0	4730	80 40	12,770
	1313.0	5580	12,500	18,080
	1314.0	6470	17,910	24,380

O SHEET 10

¹ SHEET 12

^{* -} BY LINEAR INTERPOLATION.



Engineers • Geologists • Planners Environmental Specialists

BREACH ASSUMPTIONS

TYPICAL BREACH SECTION:

HEC-1 BREACHING ANALYSIS INPUT:

TOP OF DAM ELEVATION: 1309.0)

PLAN	BREACH BOTTOM WIDTH (ST)	MAX, BREACH DEPTH (FI)	SECTION SIDE SLOPES	BREACH TIME (HRS)	WSEL AT TANT
MIN. BASACH SECTION MIN. FAIL TIME.	, 0	/9	14:14	0.5	1309.0
MAX BREACH SECTION	, 250	/ 9	6.5H:1V	0.5	/309.0
MIN. BREDCH SETTON	, 0	19	14:18	4.0	1309.0
MAX. BREACH SETT	22N 25 0	, 7	6.5H:1V	4.0	1309.0
D AVERNE PASIDLE	75	19	1 H:1 V	2.0	1309.0

BJECT _			AM SAFETY	INSPECTION		
		. <u>.</u>	MACHAM D	9MM		
BY	275	DATE	6-4-80	PROJ. NO	103-043	CONSULTANTS, INC
CHKD. BY	WZV	DATE	6-10-80	SHEET NO	OF 19	Engineers • Geologists • Planners Environmental Specialists

- THE BREACH ASSUMPTIONS LISTED ON THE PREVIOUS SHEET

 ARE BASED ON THE SUGGESTED RANGES PROVIDED BY THE

 C.O.E. (BALTIMORE DISTRICT), AND ON THE PHYSICAL CONSTRAINTS

 OF THE DAM AND THE SURROUNDING TERRAIN:
 - DEPTH OF BREACH OPENING = 19 FT (-FUT OF TAM)
 - LENGTH OF BREACHABLE EMBANKMENT & SOO FT (FIELD MEASURED)
 - VALLEY BOTTOM WIDTH = 250 FT (FIELD OCCEPTATION)
 - VALLEY SIDE SLOPES ADJACENT
 TO DAM:

RIGHT: = 7.5H: IV (USGS TOPO - SATRE, PA)

LEFT: = 10 H: IV

لغتك

 DAM SAFETY INSPECTION

 MACHAM DAM

 BY
 DATE
 6-6-80
 PROJ. NO.
 79-303-043

 CHKD. BY
 WIV
 DATE
 6-10-90
 SHEET NO.
 /8
 OF
 /9

41.83

41.83

41.83

4/.83

41.83

TIME OF

(UNDER O.45 PMF BASE FLOW CONDITIONS)

HEC-1 DAM BREACHING ANALYSIS OUTPUT:

RESERVOIR DATA:

CONSULTANTS, IN

Engineers • Geologists • Planners Environmental Specialists

PLAN # G NUMBER #	VARIADIR GREACH BOTTOM LINDTH (FT)	ACTUAL MAX. FLOW DURING FAIL TIME (CFS)	CORRESPONDED TIME OF PLAK (HRS)	MTERPOLATED OR HEC-1 RWITED MAX FLOW DURING FAIL TIME (CFS)	CORRESPONDING TIME OF PEAK (HRS)	ACTUAL PEAK FLALL THROUGH DPM (CFS)	COGRESPONDING TIME OF PEAK (HRS)	
	0	5530	42.33	5530	42.33	5530	42.33	
	950	110,00	49.38	18,975	42,17	LLC'00	42.38	
	0	2568	42.35	2566	49.33	3568	49.95	
	250	6144	42.92	8144	42.83	6144	42.92	<u> </u>
	K	8118	43.50	8118	43.50	8118	43.50	

* - SEE SHEET 16.

79-203-043 DATE CHKD, BY WJV 6-10-50 DATE SHEET NO.

Engineers • Geologists • Planners **Environmental Specialists**

PLAN NUMBER	BREACH BOTTOIN WIDTH (FT)	PEAK FLOW (cFS)	PEAIX CORRESPONDED BEAK CORRESPONDED WISE BELONGED BEEN BELON BEEN BEEN BEEN BEEN BEEN BEEN BEEN BE	MSEL MO (B GREACH (FT)	ELEUMIONA () DIFFERENCE (FT)	PEAK From (ces)	CORNESPONANG USEL®	WS EL. (D. L.) BRENCH (FT)	WS EL B FLEUATION & LIO BRENCE (FT) (FT)
9	0	1805	4.6E&1	1931.3	17 +	3954	172.0	0,177	٠/٠٥
©	250	161'61	4.58.01	1931.3	1.7+	10,895	4.411	0.111	+3.4
©	0	2559	/231.3	1931.3	0.0	1/5%	0.177	0.166	0.0
Ð	950	11hh	/e35.a	1.031.3	£0.4	OHEH	5.666	0.111	6./+
ග	ß	99/9	L.656/	4.14	41.4	5800	772.8	111.0	¢/.8

BASE FLOW CONDITIONS

UNDER O.45 PMF

DOWNSTREAM ROUTING DATA:

SWEET 16 0

OREACH OUTSOOD (SUMMARY FLANT/OUTOUT SHEETS, SHEET Q WATER SURFACE ELEVATION CORRESPONDING TO **©**

O.45 PAIF AS INTERPREATED FROM BASE FLOW ELFUATION CORPESPONDING TO THE MEAK <u>ල</u>

(couresonne asel) - (asee who present INDIT / OUTPUT SUMMART Z JHEET ELEV **③**

BARN = 1333.0 SECTION 3: - DAMAGE ELEUATIONS @ Nore

0.177 TRAILERS 5 JE(7/02) 6 9) PHINGE ELEVATION

RESIDENCES & 1340.0

| DAM SAFETY INSPECTION | MACHAM DAM | DATE | 6-10-80 | PROJ. NO. | 79-203-043

CHKD. BY DLB DATE 6-11-80

Engineers • Geologists • Planners Environmental Specialists

SUMMARY INPUT / OUTPUT SHEETS

SHEET NO. ___

			NPU1/	001	==		HEE	. 15	:				
				•								509.	ēr.
		ESTAN O		• • • • • • • • • • • • • • • • • • • •		STAGE JAUTO	L.DEAL O		AI.SMX RTIMP 0.00 0.00	BASEFIOW PARAMETERS	(2 0 7)	400. 1.00	: ¢
		1941		•		IMAME ISTAGE 1 0	ISANE	R96	•	ASCFLOW	L L	430.	122.
		141 0	9	•••••		L BRT.	NONSI OI	872 0.00	RAINFALL LOSS (00)		110Me 2.0u	1.48 HUURS, CP# .63 368. 430.	134. 22.
	3444 38AT JOB	1110W RETAC 0 0 0 7T TRACE 0 0	TO BE PERFOR . S LRT10= 1 1.00		MPUTATION	JPLT 0	TRSPC HATIO	ATA R24 M46 2.00 138.00	1101 1.0	H DATA	ATA 05 R		17.
	UAM SAPETY INSPE <u>ction</u> Macham Dam *********************************	JUB SPECIFICATION SHR SWIN O O NWIT LWOPT	ANALTSES 1 NRT1U:	•	ATION	TECON ITAPE 0 0	HYDROGRAPH DATA TRSDA TRSPC 2.40 0.00	PMS PMS PRECIP DATA H48 22.20 114.00 123.00 132.00 138.00	LUSS DATA IN STRES 0.00	UNIT HYDRUGRAPH DATA	MECESSION DATA ORCSN#	UMIT HTDHUGHAPH 63 EMI-11F-PERTID URDINATES, LAGA 51, 103, 163, 229, 299, 527, 504, 463, 421, 383,	162.
7515	TION VEHTOPPING EP AND 46-H	IDAY 0 JOPER 5	MULTI-PLAN MPLAN= ,40 .50		SUB-AR	1COMP 1	SNAP C.00	134.00	HTIUL ERAIN 1.00 0.00	TP= 1.90	5 -1.50 SMTHFF CP	-04 -PER100 163. 463.	178.
VALY	718 571 1 444 571	Z C	96	•	NFLON CC	15740	16 TARPA 1 2.40	-	_		STRTO	Н 63 ЕМП 103. 504.	196.
1G AP	DAM SAFET MACHAM DAM LO-MINGIR	286 NHR 0	RT105=	:	MESERVOIR INFLOR COMPUTATION		IHYDG TUNG	SPFE 0.00 PRUGHAM IS	STHKR D		ICIENTS FH	F HTDRUGHAPI 51.	216. 83.
SIERTOPPING ANALYSIS		- ~		•	•		å	SPAS 0.00 188PC CUMPUTED NY THE PRUCKAN IS	T 90 MJ		APPRUAINATE CLAMA CUEFFICIENTS FHOM GIVEN SATUE CP AND TP ARE TC=12.51 AND H=10.48 INTERVALS	UM17 14. 526.	238.

A 0F 0

'VBJECT			DAM SA	FETY IN	ISPE	CTION	
			MA	CHAM D	MAC		
BY	275	DATE	6-10-80	PROJ. NO	79.2	03-043	
	. 7.0		1-11-03		p	or 0	

Engineers • Geologists • Planners Environmental Specialists

PMF

	201046. 3692.993		u. X	PMF	
ñ.	1058 2:25 (57.)(0.40 PMF	0.50	
فغ	MAIN EXCS 124.55 24.51 22.25		VOLUME 80.33. 2275. 2.95. 2.965 3.107.	VOLUME 10416. 1043. 10.81 274.61 1383.	VOLUME
٠ <u>٠</u>			TOTAL VOI 603 22 235 115 135 135 135	TUIAL VOLUME 10416. 2643. 10.81 1383. 176.	TOTAL VOLUME
. .	HR, NN PERTOD Sum		72-HUUR 7 219. 219.69 1107.	72-MUUR 349. 10. 10.81 274.61 1106.	72-HUUR 697.
	₹		24-HGUR 1 557. 16. 8.64 219.53 1106.	24-HUUR 697. 20. 10.80 274.41 1382.	24-HOUR
, ,	END-OF-PERION FLUNCON MO.I	•	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6-HUUM 2153. 61. 61. 211.93 1067.	6-HOUR - 4305
. o	1088 CI	RAPHS	PLAK 2561. 73.	3201. 91.	PEAK
6	EXCS	YDROG	CFS CRS INCHES ACHES AC-FT	CFS CAS TRCHES FR AC-FT	3
5.7.4 4.7.4	PEHTOD RAIM	NFLOW H	THON	110 110 110	
N. + w	BE HH HOLDE	RESERVOIR INFLOW HYDROGRAPHS			

DAM SAFETY INSPECTION **IBJECT** MACHAM DAM 79-203-045 DATE CHKD. BY DER D OF _O DATE SHEET NO.

Engineers • Geologists • Planners Environmental Specialists

••••••••

						HYDROGR	HIDROGRAPH ROUTING	110					
		ROUTE	FROM D	AM 10 8	SECTION 2	ROUTE FROM DAM TO SECTION 21 3560 FT D.S. FROM DAM	T 0.8. F	RON DAR					
				15740	1COMP	JECUM LTAPE 0 0	ITAPE	1140	1 a d	INAME 1	15TAGE U	IAUTO 0	-
		3	0.0	CLOSS 0.000	AVC 0.00	ROUT IRES	ROUTING DATA Les isame i i	1001	7 E G		LST# 0		
				15175	nstot 6	CAG C	AMSKK 0.000	× 000.	75K 0.000	STORA -1.	ISPRAT 0		
WURNAL DEPTH CHANNEL ROUTING	TH CHANNE!	1. ROUTSHG											
57	UNCE 3 GM	0050 0060*	-	ELRY!	ECHAK 1260.0	86.WTH 3560(95ET						-
5	CHOSS SECTIUM COURDINATESSIA.ELEY.STA.ELLYETC 0.00 1260.00 450.00 1312.00 738.00 1229.00 757.00 1229.00 650.00 1240.00 950.00 1260.00	15 SECTIUM COURD 0.00 1260.00 45	FRATES 50.00 50.00	51A.£ 1232.u0 1240.u0	OFMATES51A, ELEY, 57A, ELEYER 450, UO 1232, UO 736, OO 1229, DO 850, OU 1240, UO 950, OO 1260, UO	ROIMATESSIA,ELEY,STA,ELLYETK 450.00 1232.00 738.00 1229.00 850.00 1240.00 950.00 1260.00		1227.00	740.00 1227.00 755.00 1227.00	1227.00	_		
STORAGE	0.00		2.38	-;	14.34	51.62		102.55	159.53	22	222.56	291.63	366.64
P074100	0.00	3	222.45	10.00.1 10.00.47 10.00.1		4264.14	2.5		7697.04 21096.15 301420.35	34072.16 34072.16 349224.31	1157.41 34072.76 149224.31	50147.43 50147.43 400998.81	45645.77
STAGE	1227.00		1228.74	123	1230.47	1232.21	- **	1233.95	1235.68 1253.05	123	1237.42	1239.16	1240.89
FLOM	0.00	-	222.45	1096.47		4264.34	257485.06		21096.15	349224.31	-	50142.43 400990.81	69551.47

8108A ROUTE FROM SECTION 2 TO SECTION 3; 9460 FT D.S. FHON DAM HYDROGHAPH ROUTING ••••••• CL088 0.088 ********

MACHAM DAM CONSULTANTS. INC 6-10-80 79-203-043 PROJ. NO. DATE Engineers • Geologists • Planners CHKD, BY DEB 6-11-80 ε OF 0 DATE SHEET NO. **Environmental Specialists** 228.59 894.60 21024.21 153815.38 1143.21 21624.21 153415.38 266.02 1372.58 18932.54 134775.65 996.84 1017.89 18937.54 176.75 815.93 14857.47 135163.16 1141.68 14857.47 203.99 1221.02 11915.14 994.74 13915.14 ********* 1AUTU 0 LSTR 0 ISTAGE 127.58 739.94 9287.51 117761.75 1140.16 9287.51 150.30 1078.56 9807.84 100307.68 992.63 9807.84 220.00 1131.00 235.00 1131.00 285.00 980.00 300.00 980.00 STORA ******** 83.84 666.64 5501.08 101592.24 1138.63 5501.08 101592.24 104.93 945.22 6538.29 85415.14 990.53 6538.29 FROM DAM JPRT 15K 0.000 SECTION 4: 17,600 FT D.S. 1001 0.000 49.57 5**%6.01** 29 to .83 1137.11 2936.83 86636.70 67.89 820.96 4030.33 988.42 99.0804 HYDRUCKAPH ROUTING ROUTING DATA ******* ISAME 0.000 35.L 01300 5EL .01700 CROSS SFCTION COORDINATES--SIA, FILEY, STA, ELEY--ETC 0.00 1160.00 70.00 1140.00 218.00 1133.00 231.00 1133.00 1140.00 400.00 1160.00 CRUSS SECTION CUURDINATES--STA.FILFY.STA.ELEY-FTC 6.00 1020.00 180.00 1000.00 243.00 982.00 302.00 982.00 380.00 1000.00 420.00 1020.00 24.82 **526.07** 1340.63 72678.47 1340.63 39.18 705.86 2706.77 60001.61 1150.84 986.32 1007.37 1135.58 7206.11 1 ECUM 84.NTH 5500. A V G NSTOL ICOMP FEMAX 1020.0 .0500 1131.0 1160.0 495.05 60302.58 18,79 599.85 981.94 49389,44 45.05 495.05 60307.58 1134.05) TO 941.94 SECTION 000.0 FINAT 980.0 3.42 400.23 134.72 40096.32 202.94 266.55 40026.99 1132.53 134.72 982.11 RUUTE FROM 266.55 9L088 .0960. NURMAL DEPTH CHARNEL HUUTING MURMAL DEPTH CHARMEL ROUTING ********* Q#(2) .0360 346.34 0.00 34650.15 38654.15 415.15 1131.00 980.00 0,00 ************* STAGE 101 DUTFLIM STAGE FL118 STORAGE STUMAGE

SAFETY INSPECTION

DAM

***UBJECT**

MACHAM DAM PROJ. NO. 79-203-043 DATE _ SHEET NO. __ F__ OF __O

Engineers • Geologists • Planners Environmental Specialists

		• •					;		•	•			
	•	PONDING AND	101	0.00		PERKUGNAPH KOUTING	•	700					
		MUDGIE FRUM	35.C.1 1.0F	720 71				TO E					
			15TA0 405	I COMP	1ECON 0	JTAPF 0	JPLT 0	JPRI 0	JHAME 1	15TAGE 0	IAUTO 0		
		0.0	0.000	AVG 0.00	18ES 1	NUUTING DATA IES ISANE 1 1	1001	9 9 9		LSTR			
			NSTPS 1	NSTOL.	C P C	AMSKK 0.000	× 0000.0	TSK 0.000	STURA 1-1.	I SPRAT 0			
ТЕРТН	DEPTH CHANNEL ROUTING	0011146											
0360.	1) ON(2)	08(3) .0550	ELNVI 887.0	ELMAX 920.0	8520(SEL .03200							
3 A	USS SECTIUM COC 0.00 920.00 303.00 890.00	CHUSS SECTION CUCHDINATESSTA.ELEV.STA.ELEV-ETC 0.00 920.00 100.00 900.00 282.00 490.00 103.00 B90.00 970.00 900.00 1000.00 920.00	ESSIA.EL 3 900.00 0 900.00	-51A.ELEV,STA.E! 900.00 202.00 900.00 1000.00	ELEVETC 490.00 920.00	265.00 667.00	887.00	300.00	687.00				
ي و	0.00	3.02		7.62	31.94	82.84	12.84	160.31	264.36	264.36	344.98	548.92	
:	00.00	280475.62	58		2464.55 2464.55 358715.96	7464.2u 7464.2u 431447.15	w	17141.54	11733.43 11733.43 593345.#1		53123.13	176380.34	
L	904.37	906.11		890.47	892.21	893 911	911.32	895.6W 913.05	917	914.79	899.16 916.53	910.89	
	0.00	262.39 230475.82		891.27 291662.85 3	2868.55 358715.98	7864.20 431447.15		17161.58 5097uo.72	31933.43 593345.81		53123.13	84772.89 776380.34	
	******	•	*****		:	*****		•••••	÷	÷	••••••		
		HOUTE FROM SECTION 5	SECTION	5 TU SE	HYURUGE CTION 61	HYDROGRAPH ROUTING TO SECTION 6: 20,560 FT D.S. FROM DAM	186 T 0.8.	FRUM DAM					
	-		1.5TA0 506	ICUMP 1	IECUM 0 0	UN ITAPE 0 0 0 Builting Data	1141	JPRT	INAME	ISTAGE 0	IAUTU		
		0.0	CL.055	AVG 0.00	INES	15ARE	1001	- - - - - - - - - - - - - - - - - - -		LSTR			
			NSTPS	#57bt	LAG	AMSKK	# 000	15K	STORA	ISPRAT			

CUTF LOA STURAGE

1BJECT		DAI				PECTIO)N_			
BY	DATE _	6-10-			<u>м DA</u> J. NO		3-04	3		CONSULTANTS, IN
CHKD. BY DLB	DATE	6-11			ET NO	G		0	Engineer: Environm	s • Geologists • Planners ental Specialists
			560.62 1909.56 49954.49 306786.14	798.26	49954,99				MACHAM DAM	OVERTOPPING OCCURS O = O.43 PMF
			444.33 1760.29 36010.44 272346.65	779.16	36010.84 272386.65					90 GP 18 18 18 18 18 18 18 18 18 18 18 18 18
		90.	336.94 1614.22 24795.30 239877.76	111.42	24795.30				TIME OF FAILURE HOUNS	000.00
		240.00 767.00	239.53 1471.35 15603.13 209267.35	775.68	15803.13 2. 209267.35 23			10P DF DAM 1309, UU 549. 2430.	TINE OF MAX GUTFLOW HOURS	2.24 6.14 6.16 6.16
		200.00 167.00	152.11 1331.48 8946.72 180567.14 20	773.95	8946.72 1 180567.14 20		57 57 57 54 54	153 153	DURATION Over top Huurs	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	RLNTH SEL 644001600		74.67 1195.20 4185.11 153793.60	772.21	4186.11		DAM SAFE 14	1LEMAY 1304.	MAXINUM COLFEUM CFS	1654. 2214. 2214. 2710. 3710. 6142.
	ELMAX R	CRUSS SECTION COUNDINATES51A.ELLV.STA.ELEVETC U.OU BUU.UU 40.00 780.00 195.UU 771.00 245.00 771.00 450.00 771.00 600.00 800.00	22.71 1061.93 1/30.30 128969.26 15	770.47	1730,30		O ANTHON		BAKIMUM STOWAGE AC-FT	\$ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	D 267.0	MATES51A.ELE 0.00 780.00 1.00 771.00	.63 .85 .40 .40	*	.46 128			TIE	MAXIMUM DFFTM OVEN DAM	0.00 0.00 0.00 0.30 1.53
9 # T 1700 #	2) QM(3) 50 .0900	UN CUUNDIN UU.UU 40 71.00 450	9	7 784	3 106124			ELEVATION Stohage Outflub	MAXIMUM Prservoir M.B.Elev	1307.79 1308.70 1309.70 1310.53 14.6D VAL
BURNAL DEPTH CHANNEL BOUTING	QM(1) UM(2) Q	IOSS SECTION CUU U.Ou BOO.UU 245.OU 771.OO	804.97 804.97 9.00	767.00	0.00 69.00£2#				#A710 #1 uf 985	POL.
# 12 12 12 12 12 12 12 12 12 12 12 12 12	a c	ž	STORAGE	STAGE	FC04				₹ 6.	**************************************

Engineers • Geologists • Planners Environmental Specialists

		SECTION 2	@ ≈ 3560 FT	_ ^				6 40 40 40	2	e ≈ 9460 FT	D.S. FROM DAM				7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SECTION 4	(a) ≥ (7,500 FT		D.S. FROM DAM				SECTION 5		@ ≈ 22,120 FT						SECTION 6	(a) (a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	14 096,02	DS. FROM DAM		
8	TINE HOURS	42.50	42.50	42.17	41.67		•	TIME HOURS	42.67	42.67	42.33	42.17	•	-	HUURS		43.00	17.13	12.27	42.00			HUURS	43.00	43.00	42.83	42.50	42.17		TIME	HOURS	43.17	43.33	43.00	42.83	1
STATIUM 102	MAXIMUM STAGE,FT	1230.0	1231.1	1231.5	1232.7		fo? wollers	MAXIMUM STAGE, FT	1135.9	1136.4	1137.1	1139.0	STATION 30	# 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1	STAGE, FT		985.3	980.5		6.066	STATIUM 405		STAGE, FT	1.00	3.5	7.769	692.5	. £6.89	STATIUN 506	HAXINUM .	STAGE, FT	170.3	170.0	211.2	771.7	•
PLAN 1 S	HANIMUM FLOW, CPS	1650.	2220.	3700	6328.		•	NAXINUN FLUM, CFS	1642.	2218.	2898.	6297.	-	MINIX	FLOW, CFS		1633.	2874	3624	6243.	-	7	FILUM, CFS	1628.	2200.	7890.	3607.	6223.	-	HAKINUM	FLUW, CFS	1626.	2107.	2819.	3535.	:
14	MATIO	90	9:	9	1.00	ä	2	RATIO	08'	₹.	os.	1.00	PLAN		BATIU		9.5	9	9	1.00	PLAN		KATIO	30	6	oc.	9.	1.00	PLAN		PATIO	.30	9.	05.	2.	:

SAFETY INSPECTION DAM MACHAM CONSULTANTS, INC 79-203-043 DATE 6-10-80 PROJ. NO Engineers • Geologists • Planners CHKD. BY_ DLB OF DATE SHEET NO. **Environmental Specialists** 1309.30 2780.60 549. 1309. ********* INPUT SAME AS FOR OVERTOPPING ANALYSIS, WITH THE ADDITION OF THE BREACHING DATA GIVEN HERE 1309.20 2690.00 1306. 400. IAUTO NSTAN 0 INAME ISTACE LSTR STURA ISPRAT 310. 1304. 1 309. 10 2540.00 EXPL 0.0 ********* 225. 1302. CAREA 0.0 IPLT 0 1309.00 2430.00 JPRT 0.000 DAMATU 0. 1PAP MULTI-PLAN ANALISES TO BE PERFORMED MPLAN= 5 NRTIU= 1 LRTIU= 1 METHC TRACE CUUD EXPU (DAN BAFETY INSPECTION MACHAM DAN 0000 BREACHING ANALYSIS 000 10-MINGIT TIME STEP AND 48-HOUR STORM DURATION JPL.T TOPI 0.000 JUB SPECIFICATION 1313.00 1780.00 HIDHUGRAPH MOUTING ALL PLANS HAVE SAME FI.E VI. 0.0 H LHUPT ••••••• ROUTING DATA ITAPE 0 ISAME 0.000 EXPE 0.0 e i o Ŧ 1307.00 1170.00 IECUM 0 IKES 33. 10PEL 1309.0 1296. O JUPER IUAY SCOMP NSTOL 0 ********* 1306.00 6020.00 ROUTE THROUGH RESERVOIN 711. 1312. = 2 18140 \$ CLUSS 0.000 NETES ANALYSIS 至 2 至 2 1311. 1292. 1305.00 220.00 R f 105= 0.0 386 ********* 601. 1290. 1304.60 0.00 BREACHING CAPACITYS FLEVATIONS

STAGE

FLUA

ЈВЈЕСТ	DATE _		PROJ. NO	AM 79-203-04	3		CONSULTAN rs • Geologists • P nental Specialists	
		DAM BREACH DAIA 6RWID Z ELBM 15A1. WSEL FAILEL 0. 1.00 1290.00 .50 1304.00 1309.00 STATIUM 101, PLAN 1, KATIO 1 6EGIM DAM FAILUME AT 41.83 MOUMS	HHH 250	BEGIN DAN FALLUKE AT 41.83 HOUKS PEAR HUFFLUW IS 20277. AT TIME 42.27 HUURS DAM BREACH DATA BRWED Z ELBM TFALL WSEL FALLEL 0. 1.00 1290.00 4.00 1304.00 1309.00	2	DAM BNEACH DATA BRNID 2 ELBM TFAIL WSEL FAILEL 250. 6.50 1290.00 4.00 1304.00 1309.00 STAFION 101, PLAM 4, RATIO 1	129 U	STATION 101. PLAN 5, RATIO 1 PPAK INTELIM IS 61/8. AT TIME 43.50 HIUHS

PLAN (S)

PLAN (5)

PLAN
(4)

Pra O

JBJECT		DAM SAF	ETY ANA	LYSIS
		MAC	HAM DAN	1
BY	DATE	6-10-80	PROJ. NO	-9-203-043
CHKD. BY DLB	DATE	6-11-80	SHEET NO	K 0F 0

CONSULTANTS, INC Missue .

Engineers • Geologists • Planners Environmental Specialists

		A1147	Targe upter a title	0.450446			
	TIME	BEGINATAG			BENEUF	ACCUMULATED	ACCUMULATED
	(MUDRE)	UP BMFACH (HOURS)	HTDHUGHAPH (CFS)	HTURUGHAPH (CFS)	(CFS)	(CFS)	EHRUK (AC-FT)
	41.833	000.0	2466.	2466.	5	0	0
	41.841	010.	3026.	3666.	160.	360.	· •
	41.851	020.	3586.	3000.	586.	946.	-
	41.065	620.	4146.	- 00 - 00 - 00 - 00 - 00 - 00 - 00 - 0	726.	1674.	- .
	240.14		5365				: -
	7.8.17	3.0	5825.	5005		4176	•
	208.1	590	6385.	5615.	230.	4900.	; 🕹
	41.912	910	6945.	6242.	102.	5607.	· .*
	41.922	. 0.5	7504.	6685.	620.	6222.	
	41.931	96U.	6064.	7536.	52B.	6744.	'n.
	41.941	301.	8624.	6192.	432.	7187.	•
	41.931	= :	9184.	6846.	36.	75.20.	.
	196.14			9495.			<i>•</i> •
	247.14		10101	10765		B U 3 4	
	41.9%		11423.	11360.	-	8077.	٠,
3	42.000	.167	11583.	11963.	2.	8077.	.'
2	42.030	.176	12394.	12570.	-176.	7501.	•
(42.020	4	12405.	13138.	- 5 5 5 5	1568.	<i>•</i> •
Ð	42.039	206	13628	14214	. 58.6	6514	
)	45.049	318	146.19.	14719.	1680	5833.	· •
	45.059	. 225	14450.	15216.	-165.	\$067.	÷
	45.064	.235	14862.	15693.	-431.	4236.	<u>.</u> ب
	42.07#	.245	152/3.	16148	-875.	3361.	÷.
	990.74	667	10044			. 467	: -
	42.108	275	16507.	17294.	-787-	794	: -
	42.114	284	16918	17589	.670.	124.	•
	47.121	174	17330.	17865.	-515.	-412.	9
	42.137	. 364	17741.	16148.	-407.	- R10	÷.
	42.147	-	18152.	16443.	- 790	-1109.	-
	42,157	• 55	- No. 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	18716.	. 154.	-1269.	; ;
	901.73		495.81	2000	-244.	-1507.	: ,
	42.186	151.	18456.	19427.	-470.	-1978.	-2.
	47.196	. 36.3	18947.	19629.	-681.	-2659.	-5
	45.206	111	. 85.78	19016.	-676.	-1537.	
	42.216	785.	16929.	.64.66	2 2 2	1664	i
	42.423	266.	16717	20100	757.		9
	42.245		18901	10222.	-1321.	-8436.	٠.
	42,755	. 422	16892.	20242.	-1151.	-9187.	7
	42.265	.43	18442.	20261.	-1 179.	-11165.	6-
	41.775		18873.	(1027)	-1404.	-12569.	-
	197.74	<u>.</u>			. 6761		: :
	404.74		18846	19732.	- 22		-
	42. 114	C # 4.	- Pr 16.	19535.	56.9-	CH4.510	

JBJECT				DA	<u>a ~</u>	١		AF							c	. 7	0	~	_				_			(*)		7		3/ <i>3</i>	_ กั						
						_		14	CH.	A 1					_			_				_	_				ال	4.7 (1.4 (1.5)	۱۱^	$\tilde{\mathbf{c}}$	N.	<u></u> SU I] L T	<u>ن</u> ۱ ۸ '	NTS	S	IN
BY	DLB	DAT							_					o									_						- 5 •	Ge	olo		sts	• F	Plan		_
																,																					
			3	• •	• •	•	• •	• •	:	•	• •	•	• •	•	•	•	• •	•	• •	•	• •	:	• •	•	• •	•	• •	•	: `	•	• •	•	•	• •		:	•
			22000.	• •	• •	•	• •	• •	:	•	• •	•	• •	•	. :	•	• •	•	• •	•	• •	:	• •	•		•	• •	•	: •	•		• •	•	• •	•	: .	•
		RVAL	330																			:							:							:	
		TIME INTERVAL	•			•	٠.		: •		٠.			•				•		. •		:		•			٠.	÷:	E	\$	E	Œ	Ę.	: x	Ŧ	:	
		TIME	20000.						:													:			. •	ž (: -	c 6	: = =	c :	= _			- -			
									:.		٠.											:	. .	8 .	: 				:.				•			- -	•
		AT NURMAL	18000						:												<u>_</u>	F	• •						:						;	:	
			_						:										2	ao '		:							:							:	
		(+) PUINTS	16000.	• •	• •	• •	• •	• •	:	•	• •	•	• •	•	•	•	• •	•	• ·	• ·	- ·	:	• •	•	• •	•	• •	•	: '	•	• •		•	• •	•		•
		Ξ	Ξ						:								Œ	٠ م	-			:							:							:	
			3	• •	• •	•	• •	• •	: •	•		•	• •	•	•	5	•. •	•	•	•		:	٠.	21				•	: •	•	•		•		•	: ·	•
			1 4000						:							0						:	_1	<u>ار</u>	2				:							:	
	101	¥ T	• ·						: .					•								:			رع				:						•	:	
	STATEON	HYDHUGHAPH	12000						:				- ec									:													,	:	
	314.	3							: .			Da.	•		. :	•						:							: .						•	:	
		HHEACH	0000						:	:	د 3ء											:							:								
		932							•	= ·	I											:							:								
		PULA	000	• •	• •	•	• •	• •	: a:c	•	• •	•	• •	•	•	•	• •	•	• •	•	• •	:	• •	•	• •	•	• •	•	:	•	• •	• •	•	• •	•	:	٠
		INTE	_					_	5													:														:	
		33	9	• •	• •	•	٠.;	. s.	: •	•		•		•		•		•		•		:	• •	•		•		•	<u>:</u> •	•			•	٠.	•	: •	•
			3			9	· 12		:													:							:							:	
			•		. ?.		• •		:.			•					٠.	•				:						•	: .		• •			٠.		: .	
			4000	=	e E				:													:							:							:	
			•	=	, ,	,			:																				: .							: .	
			2002		₹. • •			2 7		-				00 14.												E			7						50		
		TIME.		=	~ . = =	= = =	:::	41.46		41.5		41.9	::	17.6	42.0	~	42.0	42.6	42.6	42.0		12.	2.1	12.	::	7.7	42.7	12.		42.7	12.		42.2	2:	47.30	7.	15.

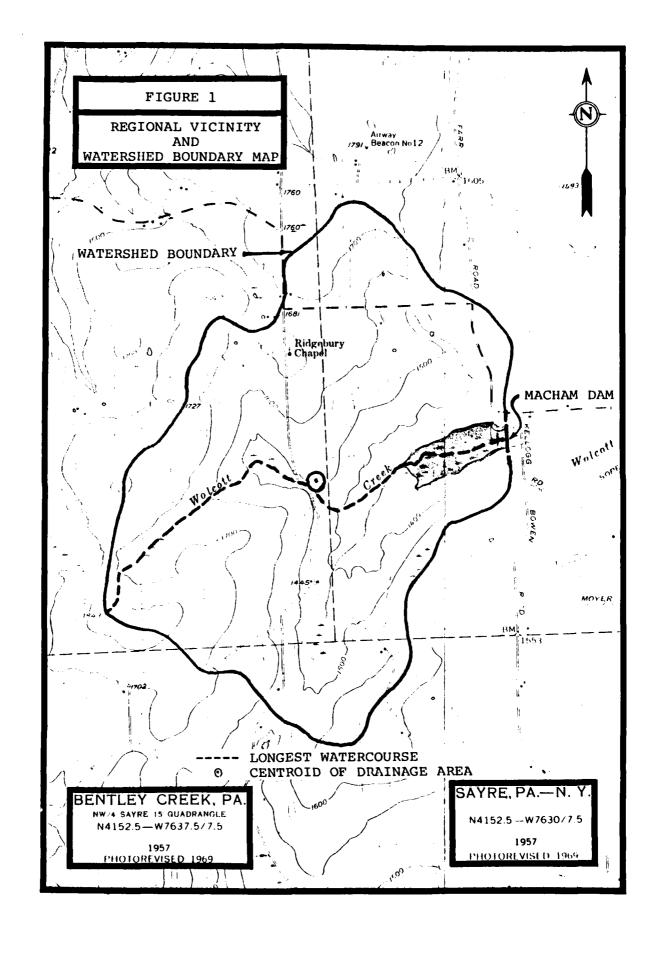
JBJECT		. <u></u>	DAI	<u> </u>		A F					<u>YS</u>		<u>ες</u>	<u>T/</u>	0	7				_				Î				2.38	١					
BY 2005	DAT	= /	-10	۔۔			<u> </u>		OJ.				79	- 2	03		43	 3		_		[31.5	<u>.</u>	رد	\		VSI	_		_	۲S,	IN	4
CHKD. BY DLA			6-1			_			EE1		Ī		~			OF		0		_								pec			Pla	IUU	ers	
	710w.	ACCUMULATED ERROR (AC-FT)	• •		•••	::	• •		• •		• •	3	• • •	•		•	• •	9	• •	0	; e	•	; ;	.	: :	•	÷	9 0	•	9 0	• •	2 0	000	•
	,042 HIURS DUNING BREACH FORMATION. H THE COMPUTED BREACH HYDRIIGRAPH,	ACCUMULATED ERROR (CFS)	96°.	76.		127.	125.	116.	103. 93.	68	61. 56.	26.	56. 44.	28.		16.	ğ. 4	.	- 1 - 3 3	-46	-24.	, ñ	15.	34.	39.	30°	-13.	-50.	-54.	- 40	•	1.05.	. 11.	
	JRS OUKING JAPUTED BRE	* ENRUH (CFS)	39.	2 4	, o :		m s	; ;	-13.	0	-12.	-10	-15.	-16.	-12.	0	 	i o ;	-15.	-14.	22.	29.	: :	19.	; -	0.5	-32.	-37.	Ť	\$ 4		* =	s	
	L OF ,042 HAT HUURS, INS WITH THE CO	COMPUTED BREACH HYDROGRAPH (CFS)	2464.	2670.	2957	3269.	3508.	3756.	1910.	4197.	4329.	4569	4680.	4863.	5054.	5128.	5284.	5351.	5412.	5502,	5562.	5605.	5733.	5784.	5946.	6016.	6129.	6175.	6178.	6174.	6159.	5986.	5909.	
	WAS DEVELOPED USING A TIME INTERVAL OF ,042 HOURS OUNING BREACH FORMATIO LL USE A TIME INTERVAL OF .167 HOURS. Origraph for Dumnsfream Calculations with the computed breach Hydrigraph. Erpolated from End-op-period Values.	INTERPOLATED BHEACH HYDRUGRAPH (CFS)	2464.	2711.	2957.	3278.	3598.	3747.	4047.	4197.	4438.	4559	4773.	4867.	5054	5128.	5201.	5351.	5443.	5449.	5584.	5634.	5733.	5803.	5945.	6016.	6091.	6178	File	6158.	6159.	6078. 5998.	5917.	
	ELOPEO USING A TIME INTER H FUR DUMMS! ED FRUM END-	TIME FROM BEGINNING OF BREACH (HOURS)	0.000	680	191	.250	. 292	. 375	458	. 500	.583	.625	700.	.750	. 192	. 875	956.	1.000	1.042	1.125	1.208	1.250	1.333	1,375	1.458	1.500	1.583	1.625	1.70#	1.750		1.815	# C 5 . ~ C	
		11ME (HUURS)	41.833	41.917	42.000	42.043	42.125	42.208	42.250	42,333	42.417	42.458	42.542	42.583	42.667	42.708	42.792	•	42.917	•	43.042	43.083	43.167	43.20B	43.292	43.333	43.417	43.458	43.542	43.583	43.667	43.750	43.797	
	THE DAM GREACH HYDROGRAPH DUMNSTREAM CALCULATION" of THIS TABLE COMPARES ' H INTERMEDIATE FLORS AM. IN										0		Œ)																				

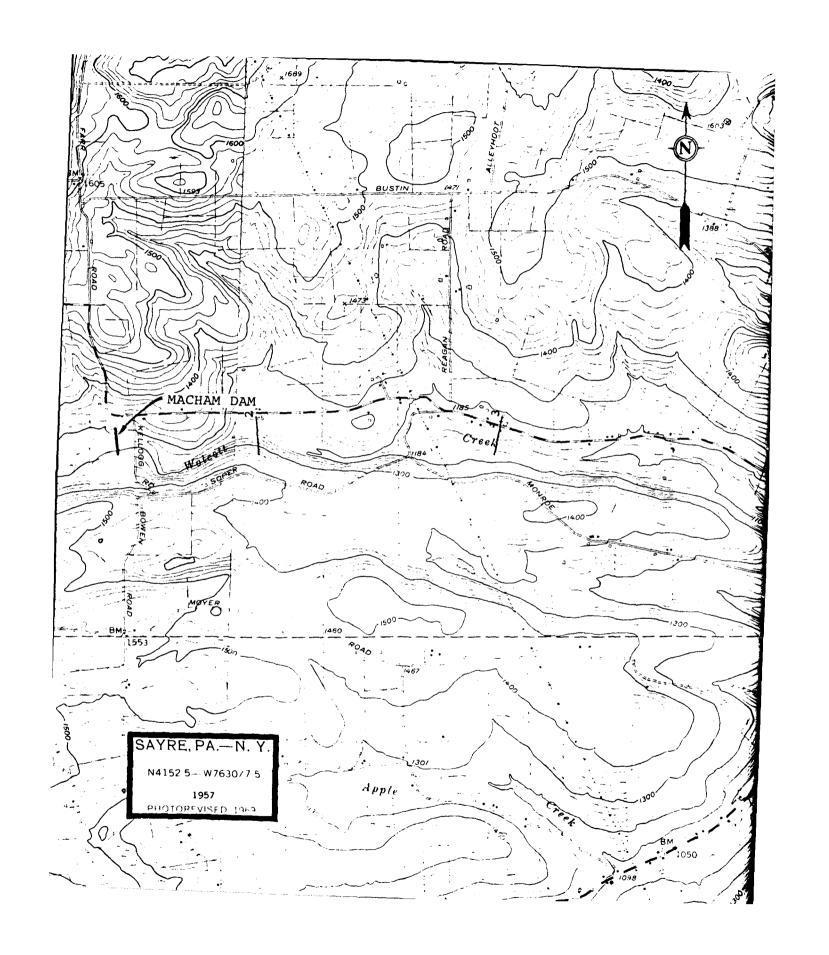
																						(W)			2][W	W.)*					
JBJECT				DA	M								(SI			T/ (<u>2 ^</u>	<u>√</u>	_								֝֟֝֟ ֜	Z	100			
BY	DAT	Έ	<u> </u>	19-	80								79		03	- 0	4:	3_				_			-				LTA	N		IN
CHKD. BY DLB	DAT	E	6.	-11	- 80	2		Sł	4EE	ΤN	10.	_	^	<u></u>	_ (OF.	(<u></u>	_			En	gin ⁄iro	eer	s •	G tal	eolo Spe	gis cia	ts • lists	· Pla :	BUU	ars
			· · ·		••	• •	•		• •	•	• •	•	•	: .	• •	•		•	• •	: •	•	• •	•	• •	•	•	• •	. •	• •	•	• •	•
		RVAL	• • • • • • • • • • • • • • • • • • • •	• •	• •	••	•	•	• •	•	• •	•	• •	: .	•	• •	••	•	• •		•	• •	•	• •	•	90	• =	, .	 s •	•		•
		F		. •	••	••	•		••	•	• •	•	• •	•	•	• •		•	••	: .			•	•	90.	50		• •	• •	s	.	•
		(*) POINTS AT NORMAL	 	• •	• •		•	: -		•		•	• •	: .	•	• •	•••	90	•		•	• •	•	••	•			• •	• •	. •	••	•
		(+) POINTS	5200.	• •	• •	••	•	•		•	••	•	••		• 4 6		• •	•	• •	: .	•	• •	•	• •	•		• •	. -	• •	•	• •	•
	<u>-</u>		 00 9	• •	• •	• •	•	· · ·		• -	 æ	• 5			•	• •		•	• •	: .	P	 L		1	•				• •		• •	•
	STATION 101	(O) INTERPULATED BREACH HYDROGRAPH (B) CUMPUTED BREACH HYDROGRAPH	• • •	• •	• •	••	•		•	. *.	: .	•	••	: .	•	••	• •	•	••	•	•	٠.	<i>y</i> .	• •	•		. • •	•	• •	•	••	•
	v	EN BREACH Reach Hydr	• • • • • • • • • • • • • • • • • • • •	• •	••	• •	• ·	08	₽	•	• •	•	• •	: •	•	• •	• •	•	• •	: .	•	• •	•	• •	•	•	•	. •	• •	•	• •	•
		INTERPOLAT	3600.	•	• •	 £	•	•	• •	•	• •	•	• •		•	• •	• •	•	• •	•	•	• •	•	• •	•		• •	• •	• •	•	• •	•
		0 8	3200.	••	• • • • • • • • • • • • • • • • • • •	• •	•	•	• •	•	••	•	• •	•	•	• •	• •	•	••	•	•	• •	•	• •	•	•	•	•	• •	•	• •	•
			2000. * 80	. 08 08	• •		•	•		•	• •	•	• •	: •	•	• •	• •	•	• •		•	••	•	• •	•			• •	• •	•	••	•
				~ ÷	v. •	~; ⇒;	,		: :					 5			\$ \$: :		-						÷
		ME KS)	~ 5 6	.92	0.0			. 25	5.5	7.5		25	5	7.9		2	E 6	25.	00		7:12	.2	.25		.3	? \$.50	. 5	29.0	-		3

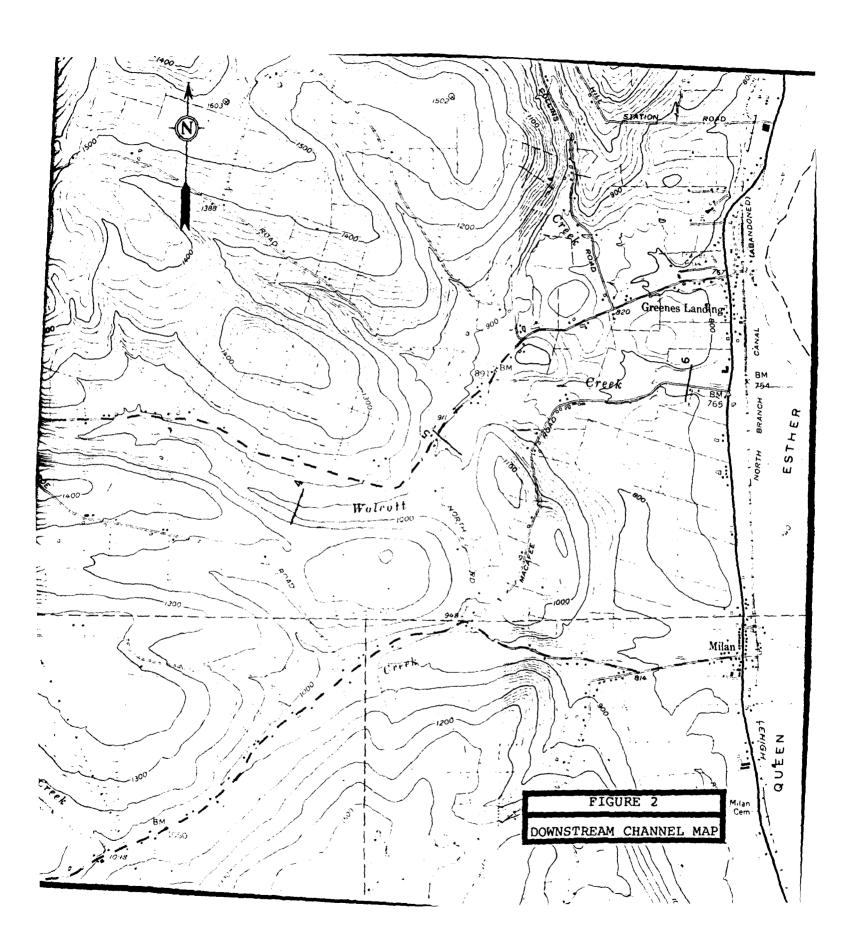
			^	AM SAFA	TY INSP	PECTION			
BJECT						AM			2
,	2055	DATE	6-10-80	PR	OJ. NO	79-203-0	43		NSULTANTS, INC
IKD. 8	Y DEB	DATE	6-11-8	<u>О</u> sн	EET NO	O OF _	0	Engineers • Ger Environmental S	ologists • Planners pecialists
				SL	INMARY OF DE	M SAFETT ANA	LYSIS		
			ELEVATION Storage Outflow	[NIT1AL 1304		SPILLWAY CRE 1304.00 310. 0.		OF DAM 309.00 549. 2430.	
	PLAN	RATIO Up Up Up Up	MAXIPUM KESFRYUIR M.S.ELEY	MAXTHUM DEPTH OVER DAM	MAXEMUM STURAGE AC-FT	MAXIMUM OUTFLOW	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE Hours
	<u> </u>	.45	1309.07	.07	551.	5530.	.44	42,33	41.03
	Ğ	.45	1309.03	.03	551.	20277.	.21	42,27	41.83
	Q	.45	1309.11	.11	555.	2568.	1.00	47.25	41.03
	000000	. 45	1309.05	.05	552.	4419.	. 33	47.92	46.03
	9	.45	1309.05	. 05	552.	617#.	. 30	43,50	41.43
			PLAN		S	TATIUN 10	2		
				RATIU	MAXIMUM FLUW.CFS	MAXIMUM Stage, Fi	TIME HOURS		
			<u> </u>	.45	5081.	1232,4	42.50	SEC	TION 2
			- Q	. 45	19191. 2559.	1235.4	42.33 42.50		
			***	.45	4411.	1232.2	43.00		
			Š	.45	6166.	1232.7	43.67		
					3	TATIUN 20	3		
				RATIU	MAXIMIM FLUW.CFS	MAXIMUM Stage.FT	TIME HUURS	5573	FION 3
			3	.45	4588.	1136.1	42.67	3201	1011 3
			Õ	.45	16476.	1142.0	42.33		
			③	. 45	2546.	1136.7	42.67		
			(-)@@ @	.45	4370.	1130.0	43.17		
			•	.45	6040.	1138.9	43.03		
						STATION	104		
				RATIO	MAXIMUM FLOW, CFS	MAXIMUM Stage.ft	TIME HOURS	SEC	TION 4
			(-)(e)(-)	.45	4292.	948.6	42.83		
			<u>~</u>	. 45 . 45	13699. 2533.	994.6	42.50		
			3	. 45	4321,	908.7	42. 03 43.33		
			<u> </u>	.45	5991.	990.1	43.83		
						STATION	405		
				HAT1U	MAXINII FLUW.CF!			SEC	TION 5
			CHAMA	.45 .45	4207 12528	892.7 894.6	43.00		
			<u> </u>	. 45	2524.	. 891.9	43.17		
			<u> </u>	.45	4303, 5932,				
			(3)	•	2.04		500		
				RATIO	MAXIMUM FLOW.CFS	MAXIMUM Stage, pt	TIME HOURS		T
			Ĵ		3954,	772.0	43.33	SEC	TION 6
			(0) (0) (0) (0) (0)	. 45 . 45	10025.	774.4	42.83		
			<u>(4)</u>	.45	2511. 4240.	771,0 772,2	43.33 41.81		
			3	45	5800.	772.0	44.17		

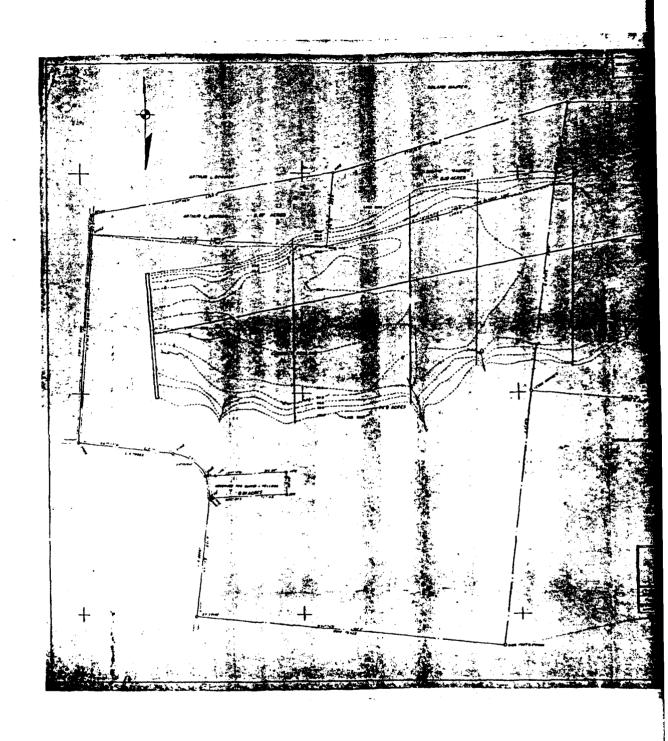
LIST OF REFERENCES

- 1. "Recommended Guidelines for Safety Inspection of Dams," prepared by Department of the Army, Office of the Chief of Engineers, Washington, D. C. (Appendix D).
- "Unit Hydrograph Concepts and Calculations," by Corps of Engineers, Baltimore District (L-519).
- 3. "Seasonal Variation of Probable Maximum Precipitation East of the 105th Meridian for Areas from 10 to 1,000 Square Miles and Duration of 6, 12, 24, and 48 Hours," Hydrometeorological Report No. 33, prepared by J. T. Riedel, J. F. Appleby and R. W. Schloemer, Hydrologic Service Division Hydrometeorological Section, U. S. Department of the Army, Corps of Engineers, Washington, D. C., April 1956.
- 4. <u>Design of Small Dams</u>, U. S. Department of the Interior, Bureau of Reclamation, Washington, D. C., 1973.
- 5. <u>Handbook of Hydraulic</u>, H. W. King and E. F. Brater, McGraw-Hill, Inc., New York, 1963.
- 6. Standard Handbook for Civil Engineers, F. S. Merritt, McGraw-Hill, Inc., New York, 1968.
- 7. Open-Channel Hydraulics, V. T. Chow, McGraw-Hill, Inc., New York, 1959.
- 8. Weir Experiments, Coefficients, and Formulas, R. E. Horton, Water Supply and Irrigation Paper No. 200, Department of the Interior, United States Geological Survey, Washington, D. C., 1907.
- 9. "Probable Maximum Precipitation Susquehanna River Drainage Above Harrisburg, Pennsylvania," Hydrometeorological Report 40, prepared by H. V. Goodyear and J. T. Riedel, Hydrometeorological Branch Office of Hydrology, U. S. Weather Bureau, U. S. Department of Commerce, Washington, D. C., May 1965.
- 10. Flood Hydrograph Package (HEC-1) Dam Safety Version, Hydrologic Engineering Center, U. S. Army, Corps of Engineers, Davis, California, July 1978.
- 11. "Simulation of Flow Through Broad Crest Navigation Dams with Radial Gates," R. W. Schmitt, U. S. Army, Corps of Engineers, Pittsburgh District.

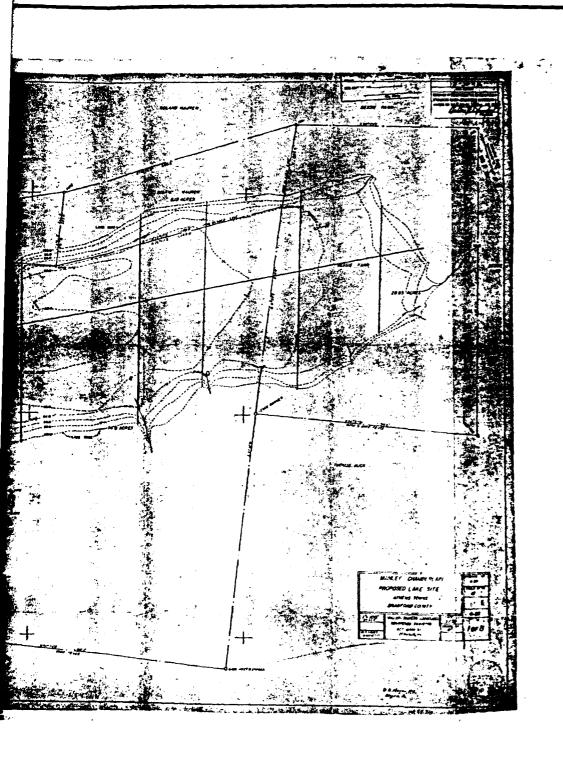

- 12. "Hydraulics of Bridge Waterways," BPR, 1970, Discharge Coefficient Based on Criteria for Embankment Shaped Weirs, Figure 24, page 46.
- 13. Applied Hydraulics in Engineering, Morris, Henry M. and Wiggert, James N., Virginia Polytechnic Institute and State University, 2nd Edition, The Ronald Press Company, New York, 1972.
- 14. Standard Mathematical Tables, 21st Edition, The Chemical Rubber Company, 1973, page 15.
- 15. Engineering Field Manual, U. S. Department of Agriculture, Soil Conservation Service, 2nd Edition, Washington, D. C. 1969.

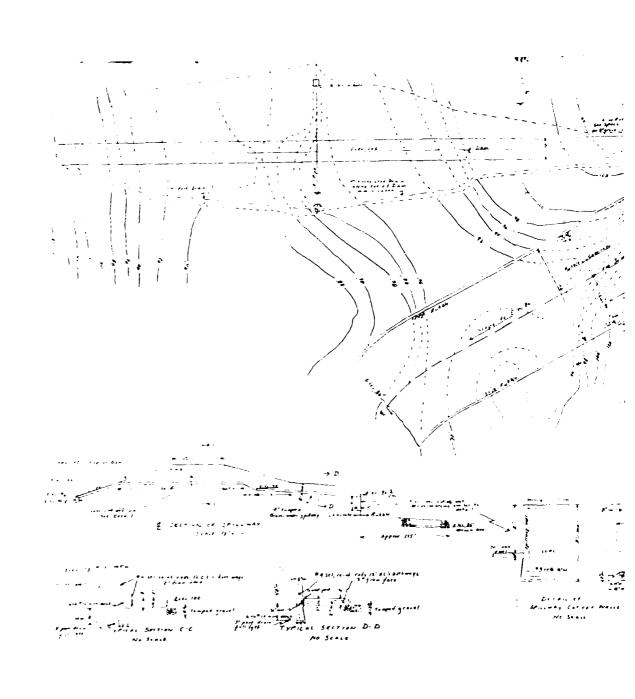

APPENDIX E


FIGURES

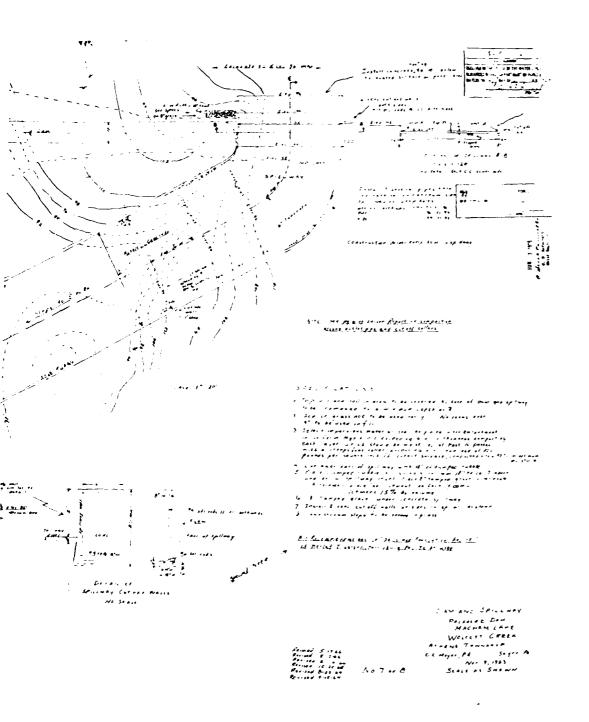
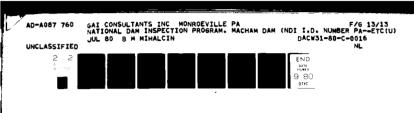
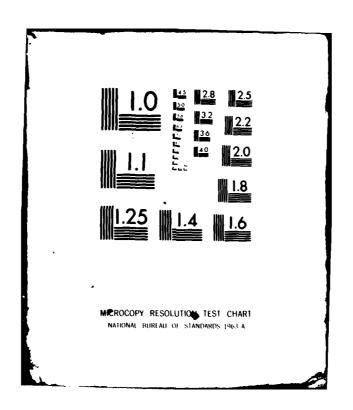
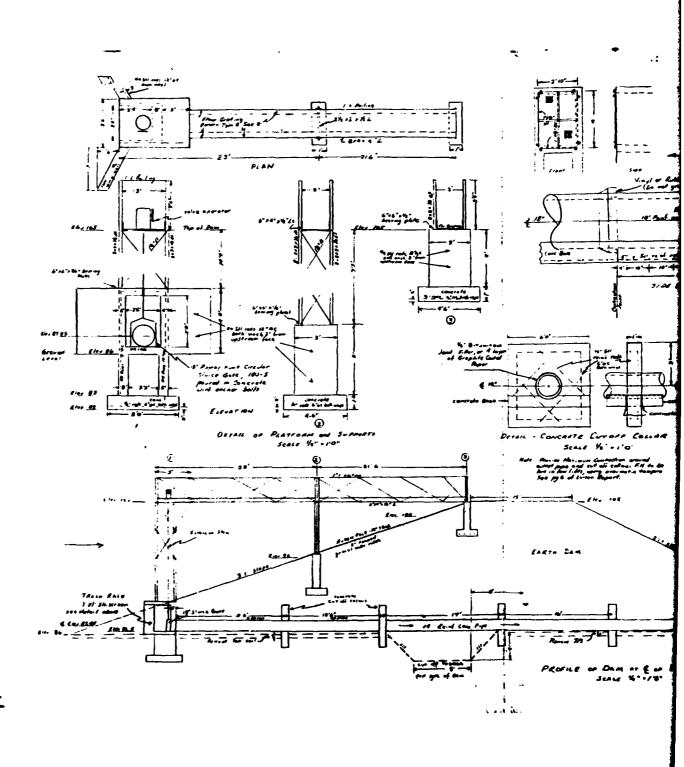

LIST OF FIGURES

<u>Figure</u>	Description/Title								
1	Regional Vicinity and Watershed Boundary Map								
2	Downstream Channel Map								
3	Reservoir Plan								
4	Dam and Spillway Plan								
5	Embankment Cross Section								
6	Embankment Profile								





)

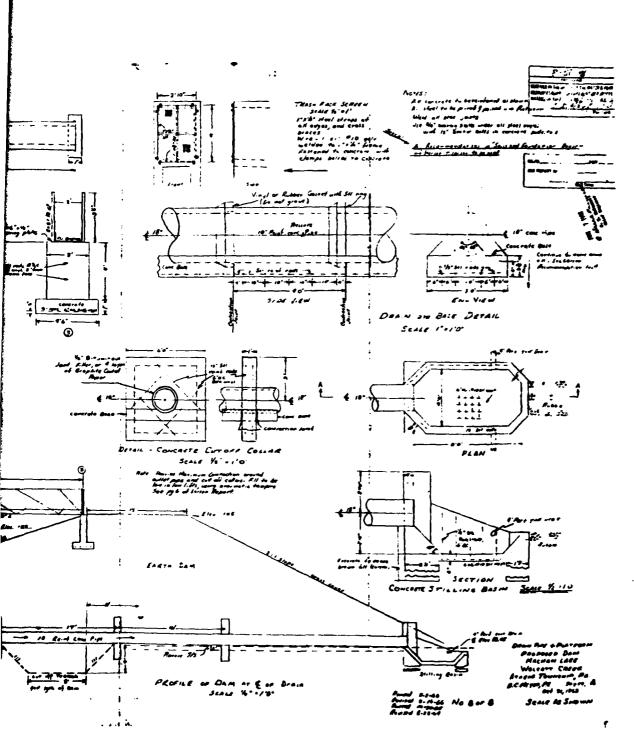
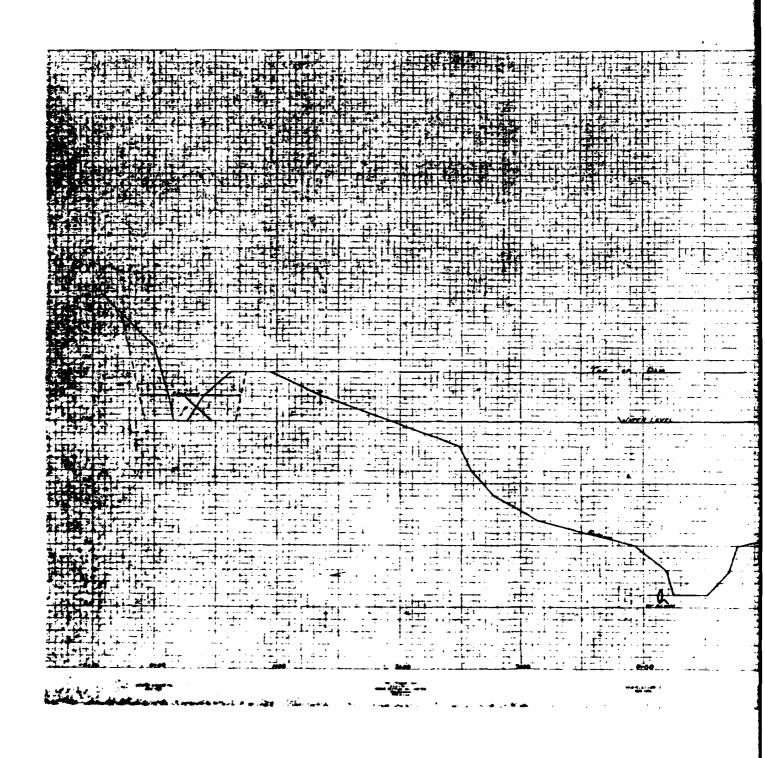
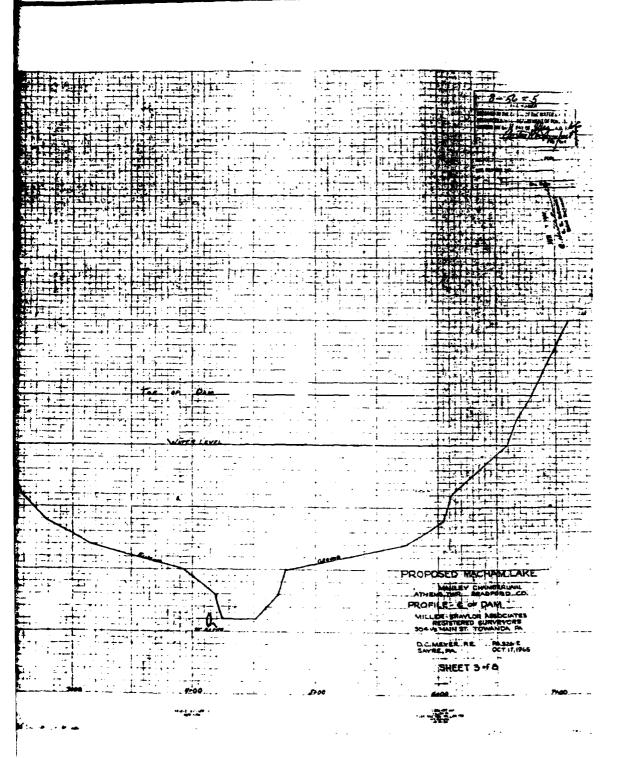


FIGURE .



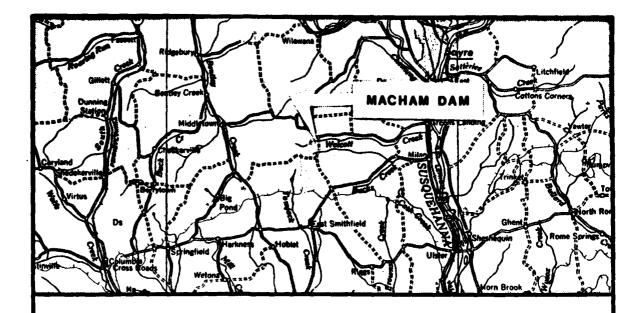


CONSULTANTS, INC. FIGURE 5

2

APPENDIX F
GEOLOGY

Geology.


Macham Dam is located within the Low Plateaus section of the Appalachian Plateau Physiographic Province of north-eastern Pennsylvania. In this area, the Low Plateaus section is characterized by flat lying sedimentary rock strata of Upper Devonian age, which are maturely disected, glaciated and of moderate relief. Overlying rock strata is a variable thickness of glacial drift deposited during the Illinonian and Wisconsian Glacial Epochs. The general direction of ice movement in this area, was about S30°W.

From the report entitled, "Soils and Foundation Report on Site of Proposed Macham Dam," information from three borings and seven test pits, none of which were drilled or dug to a depth greater than 25 feet, indicate that the material underlying the dam consists of glacial till ranging from a poorly graded gravel to a silty clay of medium plasticity.

The sedimentary rocks underlying the glacial material in the area of the dam and reservoir, are members of the Susquehanna Group of Upper Devonian age. These rocks are characterized by red to brownish shales and sandstones with some gray and greenish sandstones.

Larsen, H. T., Soils and Foundation Report on Site of Proposed Macham Dam Athens Township, Bradford County Pennsylvania, 1965.

Lohman, S. W., <u>Groundwater in Northeastern Pennsylvania</u>, <u>Pennsylvania Geological Survey</u>, Fourth Series, Bulletin WA 1937.

LEGEND

DEVONIAN

Oswayo Formation

Oswayo FORMATION
Frommish and greenish gray, fine and
medium grained annalationes with some
shales and arattered calcurrous lenses;
includes red shales which become more
numerous cantumed. Relation to type
Obsesses not presend.

Catskill Formation

Catchill Formation Chiefly red to brownish shales and sand-atones, includes gray and growish sand-atone tongues named Elk Mountain, Honosciet, Shohola, and Delaware River in the equt.

Marine beds

marine Decia Gray to alive brown shales, graywackes, and mandstones, contains "Chemung" beds and "Portage" held including Burket, Brallier, Harrell, and Trimmers Rock; Tully Limestone at base.

Susquehanna Group

barbed line is "Chemung-Catskill" con-tact of Second Pennsylvania Survey County reports; barbs on "Chemung" side of line.

Note:

The bedrock surface is covered with Pleistocene age Wisconsin and Illinoian till composed of sands, gravels and silty clays of variable thicknesses.

Scale

GEOLOGY MAP

REFERENCE:
GEOLOGIC MAP OF PENNSYLVANIA PREPARED
BY COMMONWEALTH OF PENNAL DEPT. OF INTERNAL
AFFAIRS, DATED 1960, SCALE 1" = 4 MILES

